STEINITZ' THEOREM FOR POLYHEDRA

MATTHEW KENDALL

Abstract

We prove Steinitz' theorem for polyhedra, stating that G is the graph of a polyhedron if and only if G is simple, planar, and 3 -connected.

1. Introduction

An undirected graph is a set of vertices and edges, where each edge connects two vertices. From any polyhedron one can form a graph, called the graph of the polyhedron, by letting the vertices of the graph correspond to vertices of the polyhedron and by joining two vertices of the graph whenever the corresponding vertices on the polyhedron are the endpoints of an edge of the polyhedron. The graph K_{4} on four vertices such that every pair of vertices is connected is the graph of a tetrahedron, see Figure 1 .

A graph simple if every edge is between two distinct vertices and there is no pair edges that connect the same pair of vertices. A graph is planar if we can represent with vertices as points on the plane and edges as curves with vertex endpoints such that no two edge curves cross on their interiors. A graph is 3-connected if whenever we remove one or two of its vertices and the edges incident to those vertices, the graph remains connected.

Steinitz' theorem states that planarity and 3-connectedness are necessary and sufficient conditions to characterize the graphs of convex polyhedra.

Theorem 1.1 (Steinitz' Theorem [SR76]). A graph G is the graph of a polyhedron if and only if G is simple, planar, and 3-connected.

We can see that K_{4}, the graph of a tetrahedron, is 3-connected: any time we remove one or two vertices and the edges incident to them, we obtain a connected graph. We can also see that the graph of the dodecahedron is 3 -connected. See Figure 2 for an example.

Figure 1.

Figure 2.

Conversely, if we are given a 3-connected graph, Steinitz' Theorem allows us to make it into the graph of a polytope, see Figure 3.

Remark. No similar theorem that characterizes graphs of higher dimensional polyhedra, known as polytopes, is known. See Chapter 4 of [Zie95] for further discussion.
\qquad

Figure 3.
Acknowledgments. I would like to thank my DRP mentor Sameera Vemulapalli for choosing such an interesting topic and for helping me all throughout the process.

Outline. For the necessary graph theory tools, read section 2, To show every simple 3 -connected graph is the graph of a polytope, read sections 3 and 5. To show the graph of a polytope is simple and 3 -connected, read sections 4 and 5 .

2. Graph theory preliminaries

Let's admit graphs having loops and multiple edges between pairs of vertices. Denote $V(G)$ and $E(G)$ to be the vertices and edges in G. We also sometimes denote a graph $G=(V, E)$, where V and E are the vertices and edges of G.

Definition 2.1. In a graph G, the degree of a vertex $v \in V(G)$ is the number of edges incident to v.

Definition 2.2. A path is a non-empty graph $P=(V, E)$ of the form

$$
V=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}, \quad E=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{k-1} x_{k}\right\}
$$

where the x_{i} are all distinct.
Definition 2.3. A graph G is connected if it is non-empty and any two of its vertices are linked by a path in G.
Definition 2.4. In a graph G, a set of vertices $X \subseteq V(G)$ is called a separator if there exist vertices $a, b \notin X$ such that any path from a to b passes through a vertex of X.

Definition 2.5. For a positive integer k, a graph G is k-connected if $|V(G)|>k$ and there does not exist a separator with fewer than k vertices.

From this point onwards, we assume that a 2-connected graph has no loops and that a 3 -connected graph is simple.

Note that 1-connected is equivalent to connected. Below on the left is an example of a graph H that is 2 -connected, but not 3 -connected. The graph G on the right is called the octahedron graph. It is 4-connected.

We introduce two basic operations on graphs.
Definition 2.6. Let $G=(V, E)$ be a graph. A deletion of an edge $e \in E$ gives another graph $G^{\prime}=(V, E \backslash\{e\})$. A contraction of an edge $u v \in E$ creates another graph for which the two vertices of the edge are identified, i.e. a new graph $G^{\prime \prime}$ with vertices $(V \backslash\{u, v\}) \cup\{w\}$ such that all edges between vertices in $V \backslash\{u, v\}$ are preserved and w is connected to any vertex $x \in V \backslash\{u, v\}$ if and only if $u x \in E$ or $v x \in E$.

Definition 2.7. A minor of G is a graph that can be obtained from G via a sequence of deletions and contractions of edges.

Figure 4. From Die17

Figure 5. From Die17

3. Delta-Wye operations on graphs

In this section we explain how to build 3-connected planar graphs from K_{4} via an operation that preserves realizability, i.e. the operation turns a graph of a polytope into a graph of another polytope. This operation is called the Delta-Wye operation.

Definition 3.1. An in series contraction, shown in Figure 6, is an edge contraction of an edge incident to a vertex of degree 2. An in parallel contraction, shown in Figure 7 , is an edge contraction of an edge parallel to another edge.

Any sequence of in series contractions and in parallel deletions is called an seriesparallel reduction, or SP-reduction.

Figure 6. From Zie95

Figure 7. From Zie95

Definition 3.2. A Delta-Wye operation, or ΔY operation, replaces a triangle that bounds a face by a 3 -star that connects the same vertices, or vice versa, as shown in Figure 8. If we want to specify the direction of the transformation, then we will call it a Δ-to- Y transformation, respectively a $Y-$ to- Δ transformation.

Figure 8. From Zie95
A ΔY transformation might create series or parallel edges, which can then be $S P$ reduced.

Lemma 3.3. (1) Let G be a 2-connected graph, and let $\{e, f, g\}$ be the edges at a vertex v of degree 3 in G.

If none of its edges are parallel (i.e., if v has three different neighbors), then the result of a Y-to- Δ operation is again 2-connected.
(2) Let G be a 3-connected graph (in particular, there are no parallel edges; all vertex degrees are at least 3) that is not K_{4}. Let $\{e, f, g\}$ be the edges at a vertex v in G of degree 3 .

If we perform a Y-to- Δ operation on this 3 -star, and then delete all parallel edges created by this (i.e., all edges that originally connected neighbors of v), then the resulting graph is 3-connected.

Proof. Consider a Y-to- Δ operation $G \rightarrow G^{\prime}$, and let w be the degree 3 vertex of the star in G. It is clear that the vertices of G^{\prime} can be identified with G. If a set X of one or two vertices is separating in G^{\prime}, then there exist two vertices $u, v \in V\left(G^{\prime}\right)$ such that any path between them passes through a vertex of X. We claim that any path between u, v in G must pass through a vertex of X. Consider a path P from u to v in G. If P passes through w, then it must contain exactly 2 of the edges e, f, g. By contracting one of the two edges, it becomes isomorphic to a path of G^{\prime} from u to v. So, X is a separating set for G. It is possible that the Y-to- Δ operation can create parallel edges, but parallel edges cannot belong to P, so to take into account the second part of Lemma 3.3, we delete any remaining parallel edges. This completes the proof.

There is a dual statement of Lemma 3.3 , which shows that 2-connectivity and 3connectivity is preserved after a Δ-to- Y transformation.

Lemma 3.4. (1) Let G be a 2-connected graph, and let $\{e, f, g\}$ be edges that pairwise overlap at a vertex but do not all overlap.

Then the result of a Δ-to- Y, and remove all series edges via $S P$-reductions, operation is again 2-connected.
(2) Let G be a 3-connected graph and let $\{e, f, g\}$ be edges that pairwise overlap at a vertex but do not all overlap.

If we perform a Δ-to- Y operation on this triangle, and remove all series edges via SP-reductions, then the resulting graph is 3-connected.

We will omit the proof of the dual statement. The simplest way to approach the proof is to reduce to the statement of Lemma 3.3 via the dual polyhedron and dual graph. Informally, the dual polyhedron of the polyhedron P has vertices that are the faces of P, and two vertices of the dual polyhedron are connected if the corresponding faces of P share an edge. Similarly, the dual graph of a planar graph G has vertices that are the regions of G in a planar drawing, and two vertices of the dual graph are connected if the corresponding regions share an edge. See Zie95 Chapter 4 for more details.

Let C_{2} be the graph on two vertices with two parallel edges between them.
Definition 3.5. A 2-connected graph $G \Delta Y$-reducible if it can be transformed into the graph C_{2} by a sequence of ΔY transformations and $S P$-reductions.

Lemma 3.6. If a planar graph G is ΔY-reducible, then so is every 2 -connected minor H of G.

Proof. We induct on the number of reductions it takes to reduce G into C_{2}. If $G=C_{2}$, the only 2-connected minor of G is itself. Suppose G undergoes one reduction, and let G^{\prime} be the resulting graph. If the reduction step is a $S P$-reduction, then H is a minor of G^{\prime} because H is simple. So, we can apply the inductive hypothesis on G^{\prime}.

Figure 9. A Δ-to- Y reduction step $G \rightarrow G^{\prime}$, from Zie95
Now suppose the first reduction is a Δ-to- Y reduction, and let e, f, g be the three edges involved. If all e, f, g are in H, then e, f, g form a non-separating triangle in H, so we can perform a Δ-to- Y step on that triangle in H to obtain a graph H^{\prime}. Then H^{\prime} is a minor of G^{\prime}, and we are again finished by induction. Now suppose e, f, g do not all appear in H. If we contracted only one of e, f, g to form H from G, then we have two parallel edges in H, and if we contracted two of e, f, g, then we have a loop in H. If we contract all three of e, f, g, that is the same as deleting one of the edges first, and then contracting the others. So, assume we form the minor H from G by first deleting e. Then H is a minor of G^{\prime} beacuse we can contract the corresponding edge e^{\prime} in G^{\prime}, see Figure 9. So, we can apply the inductive hypothesis on G^{\prime}, which completes the proof.

The following class of graphs will be especially important for the proof of Steinitz' theorem.

Definition 3.7. A grid graph $G(m, n)$ is the graph with lattice vertices $\{(a, b): 0 \leq$ $a \leq m-1,0 \leq b \leq n-1\}$ such that two vertices are connected if and only if their x-coordinates differ by 1 or their y-coordinates differ by 1 .
Lemma 3.8. If G is planar, then it is a minor of a grid graph.
A sketch of this proof can be found in Zie95]. We approach this proof analytically.
Proof. Let G be a planar graph with a fixed embedding into \mathbb{R}^{2}. We can 'split' the vertices of G so that G has vertex degree at most 4, as shown in Figure 10 .

Figure 10.
Let v_{1}, \ldots, v_{n} be the vertices of G and let e_{1}, \ldots, e_{m} denote the edges of G. For $r \in \mathbb{R}$ and $v \in \mathbb{R}^{2}$, let $B_{r}(v)$ denote the closed radius r Euclidean ball around v in \mathbb{R}^{2}. Let $\Delta B_{r}(v)$ denote the boundary of the radius r Euclidean ball around v in \mathbb{R}^{2}.

Let ϵ_{1} and ϵ_{2} and ϵ_{3} be some sufficiently small positive rational numbers such that the following three conditions hold.
(1) Consider the vertex v_{j}. Choose a rational point $v_{j}^{\prime} \in B_{\epsilon_{3}}\left(v_{j}\right)$.
(2) For all $i, j, \#\left(\Delta B_{\epsilon_{1}}\left(v_{i}^{\prime}\right) \cap e_{j}\right)=1$ if e_{j} is adjacent to v_{i}^{\prime} and $\Delta B_{\epsilon_{1}}\left(v_{i}^{\prime}\right) \cap e_{j}=\emptyset$ otherwise.
(3) The regions

$$
\bigcup_{p \in e_{i}} B_{\epsilon_{2}}(p) \backslash\left(\cup_{j=1}^{n} B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)\right)
$$

are connected and disjoint for $1 \leq i \leq m$.
Consider the vertex v_{j}. Suppose without loss of generality that the edges e_{1}, \ldots, e_{k} for some $k \leq 4$ are precisely the edges adjacent to v_{j}. For $1 \leq i \leq k$, choose $p_{i, j} \in \Delta B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$ with rational coordinates such that the distance between p_{i} and $\Delta B_{\epsilon_{1}}\left(v_{j}^{\prime}\right) \cap e_{i}$ is strictly less than ϵ_{2}.

Now, it is clear that by choosing a sufficiently small grid we may draw nonintersecting grid paths from v_{j}^{\prime} to each of the $p_{i, j}$ for $1 \leq i \leq k$. In particular, start at 12:00 on the circle $\Delta B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$. Reorder the edges e_{1}, \ldots, e_{k} such that the direction of the edges as one travels clockwise around $\Delta B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$ is e_{1}, \ldots, e_{k}.

Draw a path from v_{j}^{\prime} to $p_{1, j}$ as follows. Start at v_{j}^{\prime} and travel as follows. If we are one grid step away from $p_{1, j}$, travel to $p_{1, j}$. If it is possible to travel one grid step up without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$, then travel up one step. Otherwise, if it is possible to travel one grid step right without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$, then travel right one step. Otherwise, if it is possible to travel one grid step down without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$, then travel right one step. Otherwise, if it is possible to travel one grid step left without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$, then travel right one step.

Draw a path from v_{j}^{\prime} to $p_{2, j}$, if $k \geq 2$ as follows. Start at v_{j}^{\prime} and travel as follows. Take one step right. If we are one grid step away from $p_{2, j}$, travel to $p_{2, j}$. If it is possible to travel one grid step up without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$ or intersecting a previous path, then travel up one step. Otherwise, if it is possible to travel one grid step right without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$ or intersecting a previous path, then travel right one step. Otherwise, if it is possible to travel one grid step down without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$ or intersecting a previous path, then travel right one step. Otherwise, if it is possible to travel one grid step left without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$, then travel right one step.

Draw a path from v_{j}^{\prime} to $p_{3, j}$, if $k \geq 3$, as follows. Start at $v_{j^{\prime}}$ and travel as follows. Take one step down. If we are one grid step away from $p_{2, j}$, travel to $p_{2, j}$. If it is possible to travel one grid step up without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$ or intersecting a previous path, then travel up one step. Otherwise, if it is possible to travel one grid step right without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$ or intersecting a previous path, then travel right one step. Otherwise, if it is possible to travel one grid step down without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$ or intersecting a previous path, then travel right one step. Otherwise, if it is possible to travel one grid step left without leaving the interior of the disc $B_{\epsilon_{1}}\left(v_{j}^{\prime}\right)$, then travel right one step.

Lemma 3.9. All grid graphs $G(m, n)$ for $m, n \geq 3$ are ΔY-reducible to K_{4}.

Proof. We will reduce $G(m, n)$ to $G(3,3)$ primarily using two operations. If an edge connects a vertex of degree 3 , then we can delete it via a Δ-to- Y transformation and then a series reduction, as shown in Figure 11. If an edge connects two vertices of degree 4, we can "move" the edge to the other side via a Δ-to- Y transformation and then Y-to- Δ transformation, as shown in Figure 12 .

Figure 11. Operation 1, from Zie95

Figure 12. Operation 2, from Zie95]

First we delete the squares in the bottom row. Perform a series reduction on the bottom left and top right corners to get triangles, as shown in the first diagram of Figure 13. Then, using operation 2, move the bottom left edge to the top row. If the obtained edge is parallel to the edge in the top right corner, perform a parallel reduction, see Figure 14. Otherwise, perform operation 1, see the last diagram in Figure 13. This series of steps removes a square in the bottom row. Note that if we are deleting the last square in the row, we can perform two series reductions and a parallel reduction.

Figure 13. From Zie95
Figure 14. From Zie95
In this way, we can delete the squares in the bottom row. We can similarly delete the squares in the leftmost column until we obtain a $G(3,3)$. Once we have a $G(3,3)$, we reduce to a K_{4} via the steps as shown in Figure 15.

Figure 15. From Zie95
This completes the proof.
Definition 3.10. A simple ΔY operation is any ΔY operation followed by all the possible $S P$-reductions.

Corollary 3.11. Every 3 -connected planar graph G can be reduced to K_{4} by a sequence of simple ΔY operations.

Proof. We induct on the number of edges in G. The smallest 3-connected planar graph has 4 vertices, and they all must be connected. This gives us a K_{4}, which is already reduced.

Now consider any 3 -connected planar graph G. By Lemma 3.8, G is a minor of a grid graph $G(m, n)$. We can assume $m, n \geq 3$. By Lemma 3.9, $G(m, n)$ is ΔY reducible to a K_{4}. Note that $G(m, n)$ is also ΔY-reducible, as we can continue via $S P$-reductions to reduce $G(m, n)$ to C_{2}. Since G is a minor of $G(m, n)$, by Lemma 3.6, G is ΔY-reducible. Follow the ΔY reduction of G until parallel or series edges are created. After we follow an $S P$-reduction, by Lemma 3.3 or Lemma 3.4, the remaining graph G^{\prime} is 3-connected. Simple ΔY operations also preserve planarity, so G^{\prime} is planar. A simple ΔY operation decreases the number of edges, so we can apply the inductive hypothesis on G^{\prime} to obtain that G^{\prime} can be reduced to K_{4} by a sequence of simple ΔY operations. Therefore, G can be reduced to K_{4} by a sequence of simple ΔY operations, which completes the induction.

4. The simplex algorithm

Let P be a full-dimensional polyhedron in \mathbb{R}^{3}, and let $V(P)$ be the set of vertices of P. For a point $c=\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{R}^{3}$, consider the linear function that maps $x=\left(x_{1}, x_{2}, x_{3}\right)$ to $c \cdot x=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}$.
Theorem 4.1 (Simplex algorithm Dan90). The following algorithm finds a vertex of P that maximizes $c \cdot x$.
(1) Select a vertex $v \in V(P)$, and suppose it has neighbors $N(v)=\left\{u_{1}, \ldots, u_{k}\right\}$.
(2) If there exists some i such that $c \cdot u_{i}>c \cdot v$, choose one such i arbitrarily and repeat step 1 with the vertex u_{i}. If there does not exist such an i, return the vertex v.

We prove the validity of the algorithm below.
Proof. Note that this algorithm terminates because at each step, the value of $c \cdot x$ increases. It suffices to show that if we are at a vertex v for which $c \cdot v$ is not maximal, we can find a neighbor $u_{i} \in N(v)$ such that $c \cdot u_{i}>c \cdot v$. For that we need this claim.

Lemma 4.2. The cone at v spanned by the neighbors of v contains P :

$$
P \subseteq v+\left\{x \in \mathbb{R}^{3}: x=v+\sum_{i=1}^{k} \lambda_{i}\left(u_{i}-v\right), \lambda_{i} \geq 0\right\} .
$$

Proof. The rigorous proof involves many more properties of polyhedra that we can get into, so we refer to [Zie95] Lemma 3.6. A diagram of Claim 4.2 is shown below in Figure 16.

Figure 16. From Zie95

Suppose $c \cdot u_{i} \leq c \cdot v$ holds for all $i=1, \ldots, k$. Then by Claim 4.2, we can represent a point $x \in P$ by

$$
x=v+\lambda_{1}\left(u_{1}-v\right)+\cdots+\lambda_{k}\left(u_{k}-v\right)
$$

for some $\lambda_{1}, \ldots, \lambda_{k} \geq 0$. Then

$$
c \cdot x=c \cdot v+\lambda_{1}\left(c \cdot\left(u_{1}-v\right)\right)+\cdots+\lambda_{k}\left(c \cdot\left(u_{k}-v\right)\right) \leq c \cdot v
$$

which contradicts v not being a maximal value of $c \cdot x$.
Theorem 4.3 (Balinski Bal61). The graph of a polyhedron is 3-connected.
Proof. Let P be a polyhedron, and let S be a set of two vertices of $V(P)$. Take another vertex $v_{0} \in V(P) \backslash S$ and consider a plane $c_{1} x_{2}+c_{2} x_{2}+c_{3} x_{3}=b$ through $S \cup\left\{v_{0}\right\}$ with normal $c=\left(c_{1}, c_{2}, c_{3}\right)$. This plane defines a linear function f on \mathbb{R}^{3} :

$$
f: x \in \mathbb{R}^{3} \mapsto c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} .
$$

Consider the halfspace $H^{+}=\left\{x \in \mathbb{R}^{3}: f(x)>b\right\}$. By the simplex algorithm, we can find a vertex $v_{0} \in V(P)$ which maximizes the value of f. Each vertex in H^{+}and v_{0} can be connected to the maximal point of f via the simplex algorithm. Similarly, by negating the normal of the plane, we can connect every vertex in the halfspace $H^{-}=\left\{x \in \mathbb{R}^{3}: f(x)<b\right\}$ and v_{0} to the minimum value of f. Since v_{0} is connected to all vertices in $V(P) \backslash S$, the graph on $V(P) \backslash S$ is connected. This completes the proof.

See Figure 17 for an example of the proof of Balinski's theorem on a dodecahedron. After choosing the two vertices in S, shown in yellow, to be removed, we choose one of the green vertices to be v_{0} and the plane through $S \cup\left\{v_{0}\right\}$. We connect all vertices in $V(P) \backslash S$ to v_{0} as in the proof of Balinski's theorem.

Figure 17.

5. Proof of Steinitz' theorem

First we show that Steinitz' theorem is true for 3-connected planar graphs that can be reduced by a simple ΔY transformation.

Lemma 5.1. Let G be a 3-connected planar graph, and let the graph G^{\prime} be derived from G by a simple ΔY transformation.

If G^{\prime} is the graph of a 3-polytope, then G is the graph of a 3-polytope.
Proof. Let P^{\prime} be the polytope that has graph G^{\prime}. Suppose the ΔY operation is a Δ -to- Y operation. Then corresponding simple ΔY operation corresponds to cutting off vertex at the star of the polyope by a suitable plane.

Figure 18.
We will outline a few cases and the others follow with a similar choice of a plane. Consider the simple ΔY transformation from G to G^{\prime} shown on the left of Figure 19 . Note that P is created from P^{\prime} by cutting vertex 4^{\prime} from P^{\prime} by a plane through $1^{\prime}, 2^{\prime}$, and 3^{\prime}.

Figure 19. Δ-to- Y example 1
Figure 20. Δ-to- Y example 2
In Figure 20 is another example of the polytope P corresponding to graph G before G undergoes a Δ-to- Y operation. Note that P is created from P^{\prime} by cutting vertex 4^{\prime} from P^{\prime} by a plane through $1^{\prime}, 2^{\prime}$, and the circled point on segment $4^{\prime} 3^{\prime}$, shown on the right.

Now we suppose the ΔY operation is a Y-to- Δ operation. Consider the simple ΔY transformation from G to G^{\prime} shown in Figure 21. In the diagram, F_{1}, F_{2}, F_{3} are the faces of the planar graph G^{\prime}, which correspond to faces F_{1}, F_{2}, F_{3} in P^{\prime}. We extend F_{1} and F_{2} past their edges, where they meet at a line ℓ. We pick a suitable point 1 on ℓ such that 1 is not on the plane containing F_{3}. Then P is the polyhedron formed by the vertices of P^{\prime} with the additional vertex 1 .

Figure 21. Y-to- Δ example
Now we can prove Steinitz' Theorem.
Proof of Theorem 1.1. Let P be a polytope and $G(P)$ be the graph of the polytope. There are no loops or parallel edges in the graph of a polytope, so $G(P)$ is simple. By radially projecting the vertices of P from an interior point of P, we see that $G(P)$ is planar. We also know $G(P)$ is 3-connected by Balinski's Theorem 4.3 .

Now we prove the reverse direction. Suppose G is a planar, 3-connected graph. G can be reduced to K_{4} by a sequence of simple ΔY operations by Corollary 3.11. We know K_{4} is the graph of a tetrahedron, so by an induction on the number of simple ΔY operations and Lemma 5.1, G is the graph of a 3-polytope.

References

[Bal61] M. L. Balinski, On the graph structure of convex polyhedra in n-space, Pacific J. Math. 11 (1961), 431-434. MR126765
[Dan90] George B. Dantzig, Origins of the simplex method, A history of scientific computing (Princeton, NJ, 1987), 1990, pp. 141-151. MR1203105
[Die17] Reinhard Diestel, Graph theory, Fifth Edition, Graduate Texts in Mathematics, vol. 173, Springer, Berlin, 2017. MR3644391
[SR76] Ernst Steinitz and Hans Rademacher, Vorlesungen über die Theorie der Polyeder unter Einschluss der Elemente der Topologie, Springer-Verlag, Berlin-New York, 1976. Reprint der 1934 Auflage, Grundlehren der Mathematischen Wissenschaften, No. 41. MR0430958
[Zie95] Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, SpringerVerlag, New York, 1995. MR1311028

