
STEINITZ’ THEOREM FOR POLYHEDRA

MATTHEW KENDALL

Abstract. We prove Steinitz’ theorem for polyhedra, stating that G is the graph of
a polyhedron if and only if G is simple, planar, and 3-connected.

1. Introduction

An undirected graph is a set of vertices and edges, where each edge connects two
vertices. From any polyhedron one can form a graph, called the graph of the polyhedron,
by letting the vertices of the graph correspond to vertices of the polyhedron and by
joining two vertices of the graph whenever the corresponding vertices on the polyhedron
are the endpoints of an edge of the polyhedron. The graph K4 on four vertices such
that every pair of vertices is connected is the graph of a tetrahedron, see Figure 1.

A graph simple if every edge is between two distinct vertices and there is no pair
edges that connect the same pair of vertices. A graph is planar if we can represent with
vertices as points on the plane and edges as curves with vertex endpoints such that no
two edge curves cross on their interiors. A graph is 3-connected if whenever we remove
one or two of its vertices and the edges incident to those vertices, the graph remains
connected.

Steinitz’ theorem states that planarity and 3-connectedness are necessary and suffi-
cient conditions to characterize the graphs of convex polyhedra.

Theorem 1.1 (Steinitz’ Theorem [SR76]). A graph G is the graph of a polyhedron if
and only if G is simple, planar, and 3-connected.

We can see that K4, the graph of a tetrahedron, is 3-connected: any time we remove
one or two vertices and the edges incident to them, we obtain a connected graph. We
can also see that the graph of the dodecahedron is 3-connected. See Figure 2 for an
example.

Figure 1. Figure 2.

Conversely, if we are given a 3-connected graph, Steinitz’ Theorem allows us to make
it into the graph of a polytope, see Figure 3.

Remark. No similar theorem that characterizes graphs of higher dimensional polyhedra,
known as polytopes, is known. See Chapter 4 of [Zie95] for further discussion.
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Figure 3.
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Outline. For the necessary graph theory tools, read section 2. To show every simple
3-connected graph is the graph of a polytope, read sections 3 and 5. To show the graph
of a polytope is simple and 3-connected, read sections 4 and 5.

2. Graph theory preliminaries

Let’s admit graphs having loops and multiple edges between pairs of vertices. Denote
V (G) and E(G) to be the vertices and edges in G. We also sometimes denote a graph
G = (V,E), where V and E are the vertices and edges of G.

Definition 2.1. In a graph G, the degree of a vertex v ∈ V (G) is the number of edges
incident to v.

Definition 2.2. A path is a non-empty graph P = (V,E) of the form

V = {x0, x1, . . . , xk}, E = {x0x1, x1x2, . . . , xk−1xk},
where the xi are all distinct.

Definition 2.3. A graph G is connected if it is non-empty and any two of its vertices
are linked by a path in G.

Definition 2.4. In a graph G, a set of vertices X ⊆ V (G) is called a separator if there
exist vertices a, b /∈ X such that any path from a to b passes through a vertex of X.

Definition 2.5. For a positive integer k, a graph G is k-connected if |V (G)| > k and
there does not exist a separator with fewer than k vertices.

From this point onwards, we assume that a 2-connected graph has no loops and that
a 3-connected graph is simple.

Note that 1-connected is equivalent to connected. Below on the left is an example
of a graph H that is 2-connected, but not 3-connected. The graph G on the right is
called the octahedron graph. It is 4-connected.

We introduce two basic operations on graphs.

Definition 2.6. Let G = (V,E) be a graph. A deletion of an edge e ∈ E gives another
graph G′ = (V,E \ {e}). A contraction of an edge uv ∈ E creates another graph for
which the two vertices of the edge are identified, i.e. a new graph G′′ with vertices
(V \ {u, v}) ∪ {w} such that all edges between vertices in V \ {u, v} are preserved and
w is connected to any vertex x ∈ V \ {u, v} if and only if ux ∈ E or vx ∈ E.

Definition 2.7. A minor of G is a graph that can be obtained from G via a sequence
of deletions and contractions of edges.
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Figure 4. From [Die17]
Figure 5. From [Die17]

3. Delta-Wye operations on graphs

In this section we explain how to build 3-connected planar graphs from K4 via an
operation that preserves realizability, i.e. the operation turns a graph of a polytope
into a graph of another polytope. This operation is called the Delta-Wye operation.

Definition 3.1. An in series contraction, shown in Figure 6, is an edge contraction of
an edge incident to a vertex of degree 2. An in parallel contraction, shown in Figure 7,
is an edge contraction of an edge parallel to another edge.

Any sequence of in series contractions and in parallel deletions is called an series-
parallel reduction, or SP -reduction.

Figure 6. From [Zie95] Figure 7. From [Zie95]

Definition 3.2. A Delta-Wye operation, or ∆Y operation, replaces a triangle that
bounds a face by a 3-star that connects the same vertices, or vice versa, as shown in
Figure 8. If we want to specify the direction of the transformation, then we will call it
a ∆-to-Y transformation, respectively a Y -to-∆ transformation.

Figure 8. From [Zie95]

A ∆Y transformation might create series or parallel edges, which can then be SP -
reduced.
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Lemma 3.3. (1) Let G be a 2-connected graph, and let {e, f, g} be the edges at a
vertex v of degree 3 in G.

If none of its edges are parallel (i.e., if v has three different neighbors), then
the result of a Y -to-∆ operation is again 2-connected.

(2) Let G be a 3-connected graph (in particular, there are no parallel edges; all vertex
degrees are at least 3) that is not K4. Let {e, f, g} be the edges at a vertex v in
G of degree 3.

If we perform a Y -to-∆ operation on this 3-star, and then delete all parallel
edges created by this (i.e., all edges that originally connected neighbors of v),
then the resulting graph is 3-connected.

Proof. Consider a Y -to-∆ operation G → G′, and let w be the degree 3 vertex of the
star in G. It is clear that the vertices of G′ can be identified with G. If a set X of
one or two vertices is separating in G′, then there exist two vertices u, v ∈ V (G′) such
that any path between them passes through a vertex of X. We claim that any path
between u, v in G must pass through a vertex of X. Consider a path P from u to v
in G. If P passes through w, then it must contain exactly 2 of the edges e, f, g. By
contracting one of the two edges, it becomes isomorphic to a path of G′ from u to v. So,
X is a separating set for G. It is possible that the Y -to-∆ operation can create parallel
edges, but parallel edges cannot belong to P , so to take into account the second part
of Lemma 3.3, we delete any remaining parallel edges. This completes the proof. �

There is a dual statement of Lemma 3.3, which shows that 2-connectivity and 3-
connectivity is preserved after a ∆-to-Y transformation.

Lemma 3.4. (1) Let G be a 2-connected graph, and let {e, f, g} be edges that pair-
wise overlap at a vertex but do not all overlap.

Then the result of a ∆-to-Y , and remove all series edges via SP -reductions,
operation is again 2-connected.

(2) Let G be a 3-connected graph and let {e, f, g} be edges that pairwise overlap at
a vertex but do not all overlap.

If we perform a ∆-to-Y operation on this triangle, and remove all series edges
via SP -reductions, then the resulting graph is 3-connected.

We will omit the proof of the dual statement. The simplest way to approach the
proof is to reduce to the statement of Lemma 3.3 via the dual polyhedron and dual
graph. Informally, the dual polyhedron of the polyhedron P has vertices that are the
faces of P , and two vertices of the dual polyhedron are connected if the corresponding
faces of P share an edge. Similarly, the dual graph of a planar graph G has vertices
that are the regions of G in a planar drawing, and two vertices of the dual graph are
connected if the corresponding regions share an edge. See [Zie95] Chapter 4 for more
details.

Let C2 be the graph on two vertices with two parallel edges between them.

Definition 3.5. A 2-connected graph G ∆Y -reducible if it can be transformed into the
graph C2 by a sequence of ∆Y transformations and SP -reductions.

Lemma 3.6. If a planar graph G is ∆Y -reducible, then so is every 2-connected minor
H of G.
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Proof. We induct on the number of reductions it takes to reduce G into C2. If G = C2,
the only 2-connected minor of G is itself. Suppose G undergoes one reduction, and let
G′ be the resulting graph. If the reduction step is a SP -reduction, then H is a minor
of G′ because H is simple. So, we can apply the inductive hypothesis on G′.

Figure 9. A ∆-to-Y reduction step G→ G′, from [Zie95]

Now suppose the first reduction is a ∆-to-Y reduction, and let e, f, g be the three
edges involved. If all e, f, g are in H, then e, f, g form a non-separating triangle in H,
so we can perform a ∆-to-Y step on that triangle in H to obtain a graph H ′. Then H ′

is a minor of G′, and we are again finished by induction. Now suppose e, f, g do not all
appear in H. If we contracted only one of e, f, g to form H from G, then we have two
parallel edges in H, and if we contracted two of e, f, g, then we have a loop in H. If
we contract all three of e, f, g, that is the same as deleting one of the edges first, and
then contracting the others. So, assume we form the minor H from G by first deleting
e. Then H is a minor of G′ beacuse we can contract the corresponding edge e′ in G′,
see Figure 9. So, we can apply the inductive hypothesis on G′, which completes the
proof. �

The following class of graphs will be especially important for the proof of Steinitz’
theorem.

Definition 3.7. A grid graph G(m,n) is the graph with lattice vertices {(a, b) : 0 ≤
a ≤ m − 1, 0 ≤ b ≤ n − 1} such that two vertices are connected if and only if their
x-coordinates differ by 1 or their y-coordinates differ by 1.

Lemma 3.8. If G is planar, then it is a minor of a grid graph.

A sketch of this proof can be found in [Zie95]. We approach this proof analytically.

Proof. Let G be a planar graph with a fixed embedding into R2. We can ’split’ the
vertices of G so that G has vertex degree at most 4, as shown in Figure 10.

Figure 10.

Let v1, . . . , vn be the vertices of G and let e1, . . . , em denote the edges of G. For r ∈ R
and v ∈ R2, let Br(v) denote the closed radius r Euclidean ball around v in R2. Let
∆Br(v) denote the boundary of the radius r Euclidean ball around v in R2.
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Let ε1 and ε2 and ε3 be some sufficiently small positive rational numbers such that
the following three conditions hold.

(1) Consider the vertex vj. Choose a rational point v′j ∈ Bε3(vj).
(2) For all i, j, #(∆Bε1(v

′
i) ∩ ej) = 1 if ej is adjacent to v′i and ∆Bε1(v

′
i) ∩ ej = ∅

otherwise.
(3) The regions ⋃

p∈ei

Bε2(p) \
(
∪nj=1 Bε1(v

′
j)

)
are connected and disjoint for 1 ≤ i ≤ m.

Consider the vertex vj. Suppose without loss of generality that the edges e1, . . . , ek for
some k ≤ 4 are precisely the edges adjacent to vj. For 1 ≤ i ≤ k, choose pi,j ∈ ∆Bε1(v

′
j)

with rational coordinates such that the distance between pi and ∆Bε1(v
′
j)∩ei is strictly

less than ε2.
Now, it is clear that by choosing a sufficiently small grid we may draw nonintersecting

grid paths from v′j to each of the pi,j for 1 ≤ i ≤ k. In particular, start at 12:00 on the
circle ∆Bε1(v

′
j). Reorder the edges e1, . . . , ek such that the direction of the edges as one

travels clockwise around ∆Bε1(v
′
j) is e1, . . . , ek.

Draw a path from v′j to p1,j as follows. Start at v′j and travel as follows. If we are
one grid step away from p1,j, travel to p1,j. If it is possible to travel one grid step up
without leaving the interior of the disc Bε1(v

′
j), then travel up one step. Otherwise, if it

is possible to travel one grid step right without leaving the interior of the disc Bε1(v
′
j),

then travel right one step. Otherwise, if it is possible to travel one grid step down
without leaving the interior of the disc Bε1(v

′
j), then travel right one step. Otherwise, if

it is possible to travel one grid step left without leaving the interior of the disc Bε1(v
′
j),

then travel right one step.
Draw a path from v′j to p2,j, if k ≥ 2 as follows. Start at v′j and travel as follows.

Take one step right. If we are one grid step away from p2,j, travel to p2,j. If it is
possible to travel one grid step up without leaving the interior of the disc Bε1(v

′
j) or

intersecting a previous path, then travel up one step. Otherwise, if it is possible to
travel one grid step right without leaving the interior of the disc Bε1(v

′
j) or intersecting

a previous path, then travel right one step. Otherwise, if it is possible to travel one
grid step down without leaving the interior of the disc Bε1(v

′
j) or intersecting a previous

path, then travel right one step. Otherwise, if it is possible to travel one grid step left
without leaving the interior of the disc Bε1(v

′
j), then travel right one step.

Draw a path from v′j to p3,j, if k ≥ 3, as follows. Start at vj′ and travel as follows.
Take one step down. If we are one grid step away from p2,j, travel to p2,j. If it is
possible to travel one grid step up without leaving the interior of the disc Bε1(v

′
j) or

intersecting a previous path, then travel up one step. Otherwise, if it is possible to
travel one grid step right without leaving the interior of the disc Bε1(v

′
j) or intersecting

a previous path, then travel right one step. Otherwise, if it is possible to travel one
grid step down without leaving the interior of the disc Bε1(v

′
j) or intersecting a previous

path, then travel right one step. Otherwise, if it is possible to travel one grid step left
without leaving the interior of the disc Bε1(v

′
j), then travel right one step. �

Lemma 3.9. All grid graphs G(m,n) for m,n ≥ 3 are ∆Y -reducible to K4.
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Proof. We will reduce G(m,n) to G(3, 3) primarily using two operations. If an edge
connects a vertex of degree 3, then we can delete it via a ∆-to-Y transformation and
then a series reduction, as shown in Figure 11. If an edge connects two vertices of
degree 4, we can “move” the edge to the other side via a ∆-to-Y transformation and
then Y -to-∆ transformation, as shown in Figure 12.

Figure 11. Operation 1,
from [Zie95]

Figure 12. Operation 2,
from [Zie95]

First we delete the squares in the bottom row. Perform a series reduction on the
bottom left and top right corners to get triangles, as shown in the first diagram of
Figure 13. Then, using operation 2, move the bottom left edge to the top row. If the
obtained edge is parallel to the edge in the top right corner, perform a parallel reduction,
see Figure 14. Otherwise, perform operation 1, see the last diagram in Figure 13. This
series of steps removes a square in the bottom row. Note that if we are deleting the
last square in the row, we can perform two series reductions and a parallel reduction.

Figure 13. From [Zie95] Figure 14. From [Zie95]

In this way, we can delete the squares in the bottom row. We can similarly delete
the squares in the leftmost column until we obtain a G(3, 3). Once we have a G(3, 3),
we reduce to a K4 via the steps as shown in Figure 15.

Figure 15. From [Zie95]

This completes the proof. �

Definition 3.10. A simple ∆Y operation is any ∆Y operation followed by all the
possible SP -reductions.

Corollary 3.11. Every 3-connected planar graph G can be reduced to K4 by a sequence
of simple ∆Y operations.

Proof. We induct on the number of edges in G. The smallest 3-connected planar graph
has 4 vertices, and they all must be connected. This gives us a K4, which is already
reduced.
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Now consider any 3-connected planar graph G. By Lemma 3.8, G is a minor of a grid
graph G(m,n). We can assume m,n ≥ 3. By Lemma 3.9, G(m,n) is ∆Y reducible to a
K4. Note that G(m,n) is also ∆Y -reducible, as we can continue via SP -reductions to
reduce G(m,n) to C2. Since G is a minor of G(m,n), by Lemma 3.6, G is ∆Y -reducible.
Follow the ∆Y reduction of G until parallel or series edges are created. After we follow
an SP -reduction, by Lemma 3.3 or Lemma 3.4, the remaining graph G′ is 3-connected.
Simple ∆Y operations also preserve planarity, so G′ is planar. A simple ∆Y operation
decreases the number of edges, so we can apply the inductive hypothesis on G′ to obtain
that G′ can be reduced to K4 by a sequence of simple ∆Y operations. Therefore, G
can be reduced to K4 by a sequence of simple ∆Y operations, which completes the
induction. �

4. The simplex algorithm

Let P be a full-dimensional polyhedron in R3, and let V (P ) be the set of vertices of P .
For a point c = (c1, c2, c3) ∈ R3, consider the linear function that maps x = (x1, x2, x3)
to c · x = c1x1 + c2x2 + c3x3.

Theorem 4.1 (Simplex algorithm [Dan90]). The following algorithm finds a vertex of
P that maximizes c · x.

(1) Select a vertex v ∈ V (P ), and suppose it has neighbors N(v) = {u1, . . . , uk}.
(2) If there exists some i such that c · ui > c · v, choose one such i arbitrarily and

repeat step 1 with the vertex ui. If there does not exist such an i, return the
vertex v.

We prove the validity of the algorithm below.

Proof. Note that this algorithm terminates because at each step, the value of c · x
increases. It suffices to show that if we are at a vertex v for which c · v is not maximal,
we can find a neighbor ui ∈ N(v) such that c · ui > c · v. For that we need this claim.

Lemma 4.2. The cone at v spanned by the neighbors of v contains P :

P ⊆ v +

{
x ∈ R3 : x = v +

k∑
i=1

λi(ui − v), λi ≥ 0

}
.

Proof. The rigorous proof involves many more properties of polyhedra that we can get
into, so we refer to [Zie95] Lemma 3.6. A diagram of Claim 4.2 is shown below in
Figure 16.

Figure 16. From [Zie95]

�
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Suppose c · ui ≤ c · v holds for all i = 1, . . . , k. Then by Claim 4.2, we can represent
a point x ∈ P by

x = v + λ1(u1 − v) + · · ·+ λk(uk − v)

for some λ1, . . . , λk ≥ 0. Then

c · x = c · v + λ1(c · (u1 − v)) + · · ·+ λk(c · (uk − v)) ≤ c · v,

which contradicts v not being a maximal value of c · x. �

Theorem 4.3 (Balinski [Bal61]). The graph of a polyhedron is 3-connected.

Proof. Let P be a polyhedron, and let S be a set of two vertices of V (P ). Take another
vertex v0 ∈ V (P ) \S and consider a plane c1x2 + c2x2 + c3x3 = b through S ∪{v0} with
normal c = (c1, c2, c3). This plane defines a linear function f on R3:

f : x ∈ R3 7→ c1x1 + c2x2 + c3x3.

Consider the halfspace H+ = {x ∈ R3 : f(x) > b}. By the simplex algorithm, we
can find a vertex v0 ∈ V (P ) which maximizes the value of f . Each vertex in H+ and
v0 can be connected to the maximal point of f via the simplex algorithm. Similarly,
by negating the normal of the plane, we can connect every vertex in the halfspace
H− = {x ∈ R3 : f(x) < b} and v0 to the minimum value of f . Since v0 is connected
to all vertices in V (P ) \ S, the graph on V (P ) \ S is connected. This completes the
proof. �

See Figure 17 for an example of the proof of Balinski’s theorem on a dodecahedron.
After choosing the two vertices in S, shown in yellow, to be removed, we choose one of
the green vertices to be v0 and the plane through S ∪ {v0}. We connect all vertices in
V (P ) \ S to v0 as in the proof of Balinski’s theorem.

Figure 17.
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5. Proof of Steinitz’ theorem

First we show that Steinitz’ theorem is true for 3-connected planar graphs that can
be reduced by a simple ∆Y transformation.

Lemma 5.1. Let G be a 3-connected planar graph, and let the graph G′ be derived from
G by a simple ∆Y transformation.

If G′ is the graph of a 3-polytope, then G is the graph of a 3-polytope.

Proof. Let P ′ be the polytope that has graph G′. Suppose the ∆Y operation is a ∆-
to-Y operation. Then corresponding simple ∆Y operation corresponds to cutting off
vertex at the star of the polyope by a suitable plane.

Figure 18.

We will outline a few cases and the others follow with a similar choice of a plane.
Consider the simple ∆Y transformation from G to G′ shown on the left of Figure 19.
Note that P is created from P ′ by cutting vertex 4′ from P ′ by a plane through 1′, 2′,
and 3′.

Figure 19. ∆-to-Y example 1
Figure 20. ∆-to-Y example 2

In Figure 20 is another example of the polytope P corresponding to graph G before
G undergoes a ∆-to-Y operation. Note that P is created from P ′ by cutting vertex 4′

from P ′ by a plane through 1′, 2′, and the circled point on segment 4′3′, shown on the
right.

Now we suppose the ∆Y operation is a Y -to-∆ operation. Consider the simple ∆Y
transformation from G to G′ shown in Figure 21. In the diagram, F1, F2, F3 are the
faces of the planar graph G′, which correspond to faces F1, F2, F3 in P ′. We extend F1

and F2 past their edges, where they meet at a line `. We pick a suitable point 1 on `
such that 1 is not on the plane containing F3. Then P is the polyhedron formed by the
vertices of P ′ with the additional vertex 1.

�
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Figure 21. Y -to-∆ example

Now we can prove Steinitz’ Theorem.

Proof of Theorem 1.1. Let P be a polytope and G(P ) be the graph of the polytope.
There are no loops or parallel edges in the graph of a polytope, so G(P ) is simple. By
radially projecting the vertices of P from an interior point of P , we see that G(P ) is
planar. We also know G(P ) is 3-connected by Balinski’s Theorem 4.3.

Now we prove the reverse direction. Suppose G is a planar, 3-connected graph. G
can be reduced to K4 by a sequence of simple ∆Y operations by Corollary 3.11. We
know K4 is the graph of a tetrahedron, so by an induction on the number of simple ∆Y
operations and Lemma 5.1, G is the graph of a 3-polytope. �
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