
DIAGONALIZABLE OPERATORS EXERCISE

MATTHEW KENDALL

Abstract. One of my favorite linear algebra exercises.

1. Introduction

An operator on a finite dimensional vector space V over a field k is a linear function
φ : V → V . An operator is diagonalizable if there exists a basis B of V consisting of
eigenvectors: for every v ∈ B, φ(v) = λv for some constant λ in the field k. A pair of
operators φ, ψ commute if φ ◦ ψ = ψ ◦ φ. A pair of operators φ, ψ is simultaneously
diagonalizable if there exists a basis B of V consisting of eigenvectors for both φ and ψ.
Notice that if φ, ψ are simultaneously diagonalizable, then they commute because they
commute on the basis of eigenvectors. We will show that the converse is also true.

Exercise 1.1. If φ, ψ are diagonalizable operators on a finite dimensional vector space
V , then they are simultaneously diagonalizable if and only if they commute.

Let’s start the proof. Let λ1, . . . , λm be the distinct eigenvalues of φ. Since φ is
diagonalizable, there exists a decomposition of V into eigenspaces Vλi

= {v ∈ V :
φ(v) = λiv},

V = Vλ1 ⊕ Vλ2 ⊕ · · · ⊕ Vλm . (1)

Note that for an eigenspace Vλ of φ, if we take an eigenvector v ∈ Vλ, then φ(ψ(v)) =
ψ(φ(v)) = ψ(λv) = λψ(v). This means that ψ(Vλ) ⊆ Vλ, so it makes sense to restrict
the operator ψ to the space Vλ. Once we show that ψ|Vλi

is diagonalizable for every
eigenspace Vλi

, we may take a basis Bi of eigenvectors for ψ in Vλi
. Since the vectors in Bi

belong to Vλi
, they are eigenvectors for φ too. Then the basis B =

⋃
i Bi simultaneously

diagonalizes φ and ψ. Therefore, it suffices to prove the following statement.

Lemma 1.2. Let W be a subspace of a finite dimensional vector space V . If φ is
a linear operator on V such that φ is diagonalizable and φ(W ) ⊆ W , then φ|W is
diagonalizable.

We provide two proofs of Lemma 1.2. One argument is elementary, in the sense that
it uses no further definitions than the ones given above, but there is a clever induction
argument. The other uses the minimal polynomial. Then we give some extensions of
Exercise 1.1 and Lemma 1.2.

2. Elementary proof of Lemma 1.2

As above, let λ1, . . . , λm be the distinct eigenvalues of φ, and decompose V into the
eigenspaces of φ as in equation (1). It would be nice if we can choose an basis of
eigenvectors for W from the decomposition of V in (1) because the bases of W ∩ Vλi

would be eigenvectors of φ|W and we obtain a basis forW by concatenating the bases of
1
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W ∩Vλi
. It turns out that this is true. Specifically, we will show that we can decompose

W into a direct sum of its factors

W = (W ∩ Vλ1)⊕ (W ∩ Vλ2)⊕ · · · ⊕ (W ∩ Vλm). (2)

SinceW∩Vλi
⊆ W , it suffices to show the inclusionW ⊆

⊕
iW∩Vλi

. For that, we show
that we can decompose w = v1 + v2 + · · ·+ vm for eigenvectors vi ∈ W ∩ Vλi

. We prove
the following statement by induction on m: if m is minimal such that w = v1+ · · ·+vm
with vi ̸= 0, then vi ∈ W ∩ Vλi

. Note that since φ is diagonalizable, any vector can be
decomposed into a sum of eigenvectors, so such an m must exist.
If w = vi where vi ∈ Vλi

, then w ∈ W implies vi ∈ W∩Vλi
. Suppose w = v1+· · ·+vk ∈

W , where vi ∈ Vλi
and are nonzero. Then

φ(w)− λ1w = (λ2 − λ1)v2 + (λ3 − λ1)v3 + · · ·+ (λk − λ1)vk. (3)

Since φ(w) ∈ W , we know that φ(w)− λ1w ∈ W . Thus the right side is a vector in W
which is a sum of k − 1 eigenvectors the inductive hypothesis on (3), v2, . . . , vk ∈ W .
Also, v1 = w − (v2 + · · ·+ vk) ∈ W . This completes the induction.

Remark. When considering the decomposition of any w = v1 + · · · + vm ∈ W , we can
automatically show vi ∈ W for every i = 1, . . . ,m by considering the operator

πi =
∏
j ̸=i

φ− λj
λj − λi

,

where product in this case means composition of operators. The operator is a polyno-
mial in φ, so πi(W ) ⊆ W . Notice that πi(vi) = vi and πi(vj) = 0 for all j ̸= i. So,
πi(w) =

∑m
j=1 πi(vj) = vi, implying vi ∈ W .

3. Proof of Lemma 1.2 via the minimal polynomial

The minimal polynomial of an operator φ : V → V is a polynomial mφ(x) ∈ k[x]
such that mφ is monic and it has least degree for which mφ(φ) = 0. We will use the
basic properties of the minimal polynomial, see for example Keith Conrad’s notes [1].

Theorem 3.1. Let φ : V → V be an operator on V . A polynomial p(x) ∈ k[x] satisfies
p(φ) = 0 if and only if mφ(x) | p(x).

Theorem 3.2. Let φ : V → V be an operator on V . Then φ is diagonalizable if and
only if mφ can be written as a product of linear factors in k[x] and mφ has distinct
roots.

Using these properties, we can give a shorter proof of Lemma 1.2.

Proof. Let ϕ = φ|W . From Theorem 3.1, mφ(φ) = 0, which means the restriction of
mφ to W is 0. Then

mφ(ϕ) = mφ(φ|W ) = mφ(φ)|W = 0.

So, mϕ | mφ. Since φ is diagonalizable, by Theorem 3.2, mφ splits into a product of
linear factors and has distinct roots. This means that the minimal polynomial of ϕ has
no repeated factors and splits. Therefore, ϕ is diagonalizable. □
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4. Extensions

The following is an extension of Exercise 1.1.

Exercise 4.1. Let F = {φi}i∈I be a collection of commuting linear operators on a finite
dimensional vector space V . If each φi is diagonalizable on V , then the operators in F
are simultaneously diagonalizable.

See [1] for a proof that follows two steps: prove the statement for a finite number of
operators inductively, and then prove the general statement by finding a basis for the
subspace spanned by {φi}i∈I inside Hom(V, V ).

There is also an extension of Lemma 1.2 if we consider the induced mapping on the
quotient space V/W , defined by φ : v +W 7→ φ(v) +W .

Lemma 4.2. Let W be a subspace of a finite dimensional vector space V . If φ is a
linear operator on V such that φ is diagonalizable and φ(W ) ⊆ W , then φ|W and φ are
diagonalizable.
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