DIAGONALIZABLE OPERATORS EXERCISE
MATTHEW KENDALL

ABSTRACT. One of my favorite linear algebra exercises.

1. INTRODUCTION

An operator on a finite dimensional vector space V' over a field k is a linear function
¢V — V. An operator is diagonalizable if there exists a basis B of V' consisting of
eigenvectors: for every v € B, ¢(v) = Av for some constant A in the field k. A pair of
operators ¢, 1 commute if ¢ o1 = 1p o p. A pair of operators ¢, is simultaneously
diagonalizable if there exists a basis B of V' consisting of eigenvectors for both ¢ and .
Notice that if ¢, are simultaneously diagonalizable, then they commute because they
commute on the basis of eigenvectors. We will show that the converse is also true.

Exercise 1.1. If v, are diagonalizable operators on a finite dimensional vector space
V', then they are simultaneously diagonalizable if and only if they commute.

Let’s start the proof. Let Aq,..., A, be the distinct eigenvalues of . Since ¢ is
diagonalizable, there exists a decomposition of V' into eigenspaces V), = {v € V :
p(v) = A},

V=V,e&V\,& oV, (1)
Note that for an eigenspace V) of ¢, if we take an eigenvector v € V), then p(¢(v)) =
Y(p(v)) = Y(Av) = Mp(v). This means that ¢(V)) C Vy, so it makes sense to restrict
the operator 1 to the space V). Once we show that @MVA%_ is diagonalizable for every
eigenspace V),, we may take a basis B; of eigenvectors for ¢ in V). Since the vectors in B;
belong to V),, they are eigenvectors for ¢ too. Then the basis B = |, B; simultaneously
diagonalizes ¢ and 1. Therefore, it suffices to prove the following statement.

Lemma 1.2. Let W be a subspace of a finite dimensional vector space V. If ¢ is
a linear operator on V' such that ¢ is diagonalizable and o(W) C W, then o|w is
diagonalizable.

We provide two proofs of Lemma [I.2] One argument is elementary, in the sense that
it uses no further definitions than the ones given above, but there is a clever induction
argument. The other uses the minimal polynomial. Then we give some extensions of

Exercise [L1] and Lemma 1.2

2. ELEMENTARY PROOF OF LEMMA

As above, let A1, ..., A\, be the distinct eigenvalues of ¢, and decompose V' into the
eigenspaces of ¢ as in equation . It would be nice if we can choose an basis of
eigenvectors for W from the decomposition of V' in because the bases of W N V),

would be eigenvectors of ¢|y and we obtain a basis for W by concatenating the bases of
1
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W NV,,. It turns out that this is true. Specifically, we will show that we can decompose
W into a direct sum of its factors

W=WnVy,)eWnVy,)@ ---&WnV,,). (2)

Since WNV,, € W, it suffices to show the inclusion W C @, WNV,,. For that, we show
that we can decompose w = vy + vy + - - - + vy, for eigenvectors v; € W NV,,. We prove
the following statement by induction on m: if m is minimal such that w = vy +---+v,,
with v; # 0, then v; € W NV,,. Note that since ¢ is diagonalizable, any vector can be
decomposed into a sum of eigenvectors, so such an m must exist.

If w = v; where v; € V), then w € W implies v; € WNV,,. Suppose w = v1+- - -+vy, €
W, where v; € V), and are nonzero. Then

o(w) — Aw = Ay — A\)vg + (A3 — Az + -+ (Mg — A\)vg. (3)

Since p(w) € W, we know that ¢(w) — A\jw € W. Thus the right side is a vector in W
which is a sum of £ — 1 eigenvectors the inductive hypothesis on , Vo,...,vp € W.
Also, v; = w — (vg + -+ - + v) € W. This completes the induction.

Remark. When considering the decomposition of any w = vy + -+ + v,, € W, we can

automatically show v; € W for every i = 1,...,m by considering the operator
— )\
IR
j#i Y !

where product in this case means composition of operators. The operator is a polyno-
mial in ¢, so m; (W) C W. Notice that m;(v;) = v; and m;(v;) = 0 for all j # i. So,
mi(w) = >0 mi(v;) = v, implying v; € W.

3. PROOF OF LEMMA [1.2] VIA THE MINIMAL POLYNOMIAL

The minimal polynomial of an operator ¢ : V' — V' is a polynomial m,(z) € k[z]
such that m,, is monic and it has least degree for which m,(p) = 0. We will use the
basic properties of the minimal polynomial, see for example Keith Conrad’s notes [I].

Theorem 3.1. Let ¢ : V. — V be an operator on V. A polynomial p(x) € k[z] satisfies
p(p) =0 if and only if my,(x) | p(x).

Theorem 3.2. Let ¢ : V — V be an operator on V. Then ¢ is diagonalizable if and
only if my, can be written as a product of linear factors in k[x] and m, has distinct
T001S.

Using these properties, we can give a shorter proof of Lemma [1.2

Proof. Let ¢ = p|w. From Theorem my(p) = 0, which means the restriction of
my, to W is 0. Then

mw((b) = mw(@‘w) = m¢(90)lw =0.

So, mg | my,. Since ¢ is diagonalizable, by Theorem m,, splits into a product of
linear factors and has distinct roots. This means that the minimal polynomial of ¢ has
no repeated factors and splits. Therefore, ¢ is diagonalizable. O
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4. EXTENSIONS
The following is an extension of Exercise [1.1]

Exercise 4.1. Let F = {¢; }icr be a collection of commuting linear operators on a finite
dimensional vector space V. If each @; is diagonalizable on V', then the operators in F
are simultaneously diagonalizable.

See [I] for a proof that follows two steps: prove the statement for a finite number of
operators inductively, and then prove the general statement by finding a basis for the
subspace spanned by {¢; }icr inside Hom(V, V).

There is also an extension of Lemma if we consider the induced mapping on the
quotient space V/W, defined by @ : v+ W +— p(v) + W.

Lemma 4.2. Let W be a subspace of a finite dimensional vector space V. If ¢ is a
linear operator on' V' such that ¢ is diagonalizable and p(W) C W, then o|lw and @ are
diagonalizable.
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