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Abstract. We survey the problem of constructing isospectral manifolds.

1. Introduction

Suppose we are given a domain Ω ⊆ R2 with smooth boundary Γ. Think of Ω as a
membrane, and suppose we set it in motion with its boundary Γ fixed. Let F (x, y; t) =
F (ρ; t) be the vertical displacement, perpendicular to the plane containing Ω, of the particle
ρ = (x, y) at time t. It is a theorem from classical mechanics that F satisfies the wave
equation

∂2F

∂t2
= c2∇2F,

where ∇2 = ∂2

∂x2 + ∂2

∂y2
is the spatial Laplacian operator. Special solutions to the above

equation are pure tones F (ρ; t) = U(ρ)eiωt. Pure tones U(ρ)eiωt satisfy the wave equation if
and only if

c2∇2U + ω2U = 0 and U = 0 on Γ.

By “U = 0 on Γ” we mean that U(ρ) → 0 as ρ approaches a point of Γ. Showing that are a
discrete set of frequencies ω satisfying the above equation was an important problem in 19th
century mathematical physics: Poincaré and many others struggled with it. In the beginning
of the 20th century, it was shown that the Laplacian does have a discrete spectrum.

Kac considers the membrane Ω to be a “drum” which is set in motion. He attributes
hearing the problem from Salomon Bochner around 10 years before his article [Kac66] was
published. The problem “can you hear the shape of a drum?”, stripped of all pictoresque
language, is the problem of determining the isometry class of Ω given we know all of the
eigenvalues λ of the eigenvalue problem

c2∇2U + λU = 0 in Ω,

U = 0 on Γ.

One of the main goals of this paper is to answer Kac’s question in the negative. Interest-
ingly, even though you cannot “hear” the domain up to isometry, but you can “hear” the
area. In 1911, Weyl proved that if N(λ) is the number of eigenvalues of Ω less than or equal
to λ, then

N(λ) ∼ |Ω|
2π

λ,

which means that limλ→∞
N(λ)
λ

= |Ω|
2π
. In fact, he proved that for any bounded domain

Ω ⊆ Rd,

N(λ) ∼ (2π)−dωd vol(Ω)λ
d/2,

where ωd is the volume of the unit ball in Rd.
1
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In this paper, we survey the history and important results related to isospectral domains,
and more generally, isospectral manifolds.

1.1. Organization of the paper. We go over relevant background in Section 2. In Sec-
tion 3, we prove the existence of two flat 16-dimensional tori which are isospectral and not
isometric, a result by Milnor [Mil64] with a short and elegant proof. In Section 4, we mo-
tivate and outline the proof of a celebrated construction method of isospectral manifolds
by Sunada [Sun85]. Finally, in Section 5, we provide a construction method of isospectral
non-isometric planar domains by Buser, Conway, Doyle, and Semmler [BCDS94], settling
Kac’s question in the negative.

2. Background

Let (M, g) be a compact Riemannian manifold with boundary. Then M has a Laplace
operator ∆M that acts on smooth functions f on M , defined by ∆M(f) = − div(grad f)1.
It can be shown using the spectral theorem of compact self-adjoint operators, that the
eigenspaces of ∆M are finite dimensional and that the Dirichlet eigenvalues are real, positive,
and have no limit point. Thus, they can be arranged in increasing order

0 < λ1 ≤ λ2 ≤ · · · , λn → ∞.

There moreover exists an orthonormal sequence of C∞(M) functions {1 = f0, f1, f2, . . .} with
∆Mfi = λifi that contains a basis for every eigenspace and generates a dense subspace of
L2(M) in the L2-norm topology. If M has boundary, we can ensure that the fi are vanish
on the boundary of M . We then call the eigenvalues in the spectrum Dirichlet eigenvalues
and the eigenfunctions Dirichlet eigenfunctions.

The ordered sequence of nonzero eigenvalues of ∆M , listed with multipicity, is called the
eigenvalue spectrum of M , denoted λ(M). Two Riemannian manifolds are isospectral if their
spectra coincide, counted with multiplicities.

Definition 2.1. Let M an n-dimensional compact connected Riemannian with eigenvalue
spectrum λ(M) = (λi)i≥1. The (Minakshisundaram-Pleijel) zeta function of M is defined by
the generalized Dirichlet series

ζM(s) =
∑
i≥1

λ−s
i .

In a celebrated article of Minakshisundaram and Pleijel [MP49], they used the above
zeta function to prove Weyl’s law. They also showed that ζM(s) converges absolutely and
uniformly to a holomorphic function on some right half-plane and has a meromorphic con-
tinuation to C that is holomorphic at simple poles at integers 1, . . . , n/2 if n is even and
half-integers n/2, n/2− 1, . . . if n is odd.

Proposition 2.2. M1 and M2 are isospectral if and only if ζM1(s) = ζM2(s).

Proof. This proof follows Andrew Sutherland’s lecture notes on arithmetic eqivalence and
isospectrality. The forward direction is immediate. Suppose ζM1(s) = ζM2(s) but the eigen-
value spectra λ(M1) and λ(M2) do not coincide. Without loss of generality, we can choose
j such that λj(M1) > λj(M2) and λi(M1) = λi(M2) for all 1 ≤ i < j. Note that this implies
that λj(M1) > λi(M2) for all i ≥ j. Let nj be the multiplicity of λj(M1) in λ(M1). Since the
zeta functions ζMi

converge absolutely and uniformly on some right half-plane, we can find

1The sign convention is to guarantee that the eigenvalues increase.

https://math.mit.edu/~drew/ArithmeticEquivalenceLectureNotes.pdf
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σ ∈ R such that ζM1(s) and ζM2(s) converge absolutely and uniformly for all s ≥ σ. This
implies that for real t ≥ σ,

ζM1(t)− ζM2(t) ∼ njλj(M1)
−t.

This contradicts ζM1(s) = ζM2(s), which concludes the proof. □

3. 16-dimensional tori

A flat torus is a Riemannian manifold of the form Rn/L, where L is a lattice of rank n.
The torus is called flat because it has zero Gaussian curvature everywhere. Using this fact,
Milnor [Mil64] proved the following:

Theorem 3.1. There exist a pair of 16-dimensional flat tori which are isospectral and non-
isometric.

Proof. For a lattice L of Rn, each y ∈ L∗ determines an eigenfunction f(x) = exp(2πix · y)
for the Laplace operator on Rn/L. The corresponnding eigenvalue λ is (2π)2y · y. So, the
number of eigenvalues less than or equal to (2πr)2 is equal to the number of points of L∗

lying within a ball of radius r about the origin.
Define the dual L∗ of a lattice L to be all y ∈ Rn such that x · y is an integer for all x ∈ L,

and L is self-dual if L = L∗. According to Witt [Wit41], there is a pair of self-dual lattices
L1, L2 ∈ R16 such that there is no rotation of R16 carrying L1 to L2 such that each ball B
around the origin contains the same number of points of L1 as L2. Self-dual lattices have
the same number of points inside a ball of radius r because they have determinant of norm
1. It follows that R16/L1 and R16/L2 are not isometric, but do have the same sequence of
eigenvalues. □

After Milnor’s example, many isospectral pairs of manifolds in dimension two and higher
were constructed. Vignéras [Vig80] constructed examples for Riemann surfaces with con-
stant negative curvature, and Ikeda [Ike83] constructed isospectral lens spaces with constant
curvature.

4. Sunada’s theorem

Sunada’s theorem has its origins in number theory. Given an algebraic number field K
(a finite extension of Q), each prime p ∈ N has a prime ideal decomposition with respect to
K, and we can package the degrees of the prime ideals factors into an increasing sequence
ℓ[K](p) called the length of p with respect to K. We call two number fields K1 and K2

isospectral if for all large enough primes p, ℓ[K1](p) = ℓ[K2](p). In 1880, Kronecker [Kro80]
asked whether two number fields are isomorphic if they have the same spectrum.

In 1925, building on the work on Hurwitz, Bauer, and others, Gassmann [Gas26] showed
the existence of two isospectral non-isomorphic number fields is equivalent to displaying a pair
of finite groups with a particular property, called Gassmann equivalent or almost-conjugate,
see Definition 4.1. He then constructed a pair with this property, giving a counter example
to Kronecker’s conjecture. In modern language, Gassmann’s result is stated in terms of the
zeta function associated to a number field because it is known that is an equivalent condition
for isospectrality of number fields.

See Buser’s book [Bus10] for an excellent account on Sunada’s theorem.
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Proposition. Let K be a finite Galois extension of Q with Galois group G = G(K/Q), and
let k1 and k2 be subfields of K corresponding to subgroups H1 and H2 of G respectively. Then
the following two conditions are equivalent

(1) The groups H1 and H2 are Gassmann equivalent.
(2) The zeta functions of k1 and k2 are the same.

In 1984, Sunada discovered that Buser’s argument can be adapted to Riemannian geom-
etry. To state Sunada’s theorem, we associate to a pair of finite groups a pair of isospectral
manifolds. The groups act by isometries on a given Riemannian manifold, and the examples
are the quotients. Denote # by the cardinality of a set, and for any group G, denote the
conjugacy class of an element g ∈ G by [g],

[g] = {σgσ−1 | σ ∈ G}.

Definition 4.1. Let G be a finite group. Two subgroups H1, H2 of G are called almost
conjuate or Gassmann equivalent if for all g ∈ G,

#([g] ∩H1) = #([g] ∩H2).

Observe that conjugate subgroups are almost conjugate.

Theorem 4.2 (Sunada’s Theorem). Let π : M → M0 be a normal finite Riemannian
covering with covering transformation group G, and for i = 1, 2, let πi : Mi → M0 be
coverings corresponding to the subgroups Hi. If H1 and H2 are almost conjugate, then M1

and M2 are isospectral.

4.1. Proof of Sunada’s Theorem. In this section, we outline the proof of Sunada’s theo-
rem. First we develop a trace-formula. See Appendix B for relevant definitions.

Let V be a Hilbert space on which a finite group acts as unitary transformations, and
let A : V → V be a self-adjoint operator of trace class. We assume L commutes with the
G-action.

For a subgroup H in G, denote V H to be the subspace of H-invariant vectors:

V H = {v ∈ V | hv = v for any h ∈ H}.
In the following trace formula, tr(A|V H) with respect to the vector space V H , and tr(hA)
and tr(gA) are with respect to the vector space V H . Let [G] be the set of conjugacy classes
of G. Denote the conjugacy class of h in H by [h]H .

Lemma 4.3 (Elementary trace formula). The restriction of L to V H is also of trace class,
and

tr(A|V H) =
1

#H

∑
[h]H⊂[H]

#[h]H tr(hA) =
1

#H

∑
[g]∈[G]

#([g] ∩H) tr(gA).

Proof. Consider the projection map P given by

P (v) =
1

#H

∑
h∈H

hv.

Then P maps V onto V H and acts as the identity map on V H . We also see that tr(PA) =
tr(A|V H) by extending a basis of V H to a basis of V . This implies that

tr(A|V H) =
1

#H

∑
h∈H

tr(hA).
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Note that trace is invariant under conjugation, so

tr(A|V H) =
1

#H

∑
[h]H∈[H]

#[h]H tr(hA),

which gives us the first formula. To obtain the second, we note that for every conjugacy class
[h]H of H and any conjugacy class [g] of G, either [h]H ⊂ [g] or [h]H ∩ [g] = ∅. This implies
that we can rewrite the sums as

∑
[h]H∈[h] =

∑
[g]∈[G]

∑
[h]H∈[g]∩H . Again by invariance of

trace under conjugation, tr(hA) = tr(gA) for all h such that [h]H ⊂ [g] ∩ H. This implies
that

tr(A|V H) =
∑

[h]H∈[H]

#[h]H tr(hA) =
1

#H

∑
[g]∈[G]

∑
[h]H∈[g]∩H

#[h]H tr(gA).

From the fact that
∑

[h]H∈[g]∩H #[h]H = #([g] ∩H), we obtain the second formula. □

Lemma 4.3 implies following corollary.

Corollary 4.4. Suppose that H1, H2 are almost conjugate subgroups of G. Then tr(A|V H1) =
tr(A|V H2).

Let π : M → M0 be a normal finite Riemannian covering with covering transformation
group G, and for i = 1, 2, let πi : Mi → M0 be coverings corresponding to the subgroups Hi.
See Appendix A for covering space definitions. The crux of Sunada’s theorem can now be
proved.

Theorem 4.5. If H1 and H2 are almost conjugate, then M/H1 and M/H2 are isospectral.

Proof outline. By Proposition 2.2, it suffices to show that ζM1(s) and ζM2(s) are identical.
To a compact connected Riemannian manifold M , we associate the subset VM ⊆ L2(M)

and the operator AM on VM , defined by

VM =

{
f ∈ L2(M) :

∫
M

f dx = 0

}
,

AM = (∆M |V )−s.

It is known AM is of trace class and trAM = ζM(s). From the covering projection map
ω̃i : M → M/Hi, consider the map

L2(Mi) → L2(M)

f 7→ (#Hi)
−1/2f ◦ ω̃i.

This map induces a map of Hilbert spaces

ϕi : VMi
→ V Hi

M ,

where V Hi
M are the Hi-invariant vectors in VM . It is not difficult to verify that ϕi is an

isometry. Moreover, by considering the action of ϕi on each eigenspace and using linearity
of the Laplacian, we see that

ϕi ◦ AMi
= AM ◦ ϕi. (1)
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Let (ek)k be an orthonormal basis for VMi
. Since ϕi is an isometry, (ϕi(ek))k is an orthonormal

basis for V Hi
M . Then

trAMi
=

∑
k

⟨AMi
ek, ek⟩

=
∑
k

⟨ϕi(AMi
ek), ϕi(ek)⟩, (ϕi an isometry)

=
∑
k

⟨AMϕi(ek), ϕi(ek)⟩ (By (1))

= tr(AM |V Hi
M ).

This implies ζMi
(s) = tr(AMi

) = tr(AM |V Hi
M ). By Corollary 4.4,

ζM1(s) = tr(AM |V H1
M ) = tr(AM |V H2

M ) = ζM2(s).

This concludes the proof. □

5. Planar domains

In this section we answer Kac’s original question in the negative.

Figure 1. Warped Propeller, from [BCDS94, Figure 3]

Theorem 5.1. The two domains given in Figure 1 are Dirichlet isospectral and not isomet-
ric.

Proof. We consider two arrangements of seven equilateral triangles, which the paper calls
‘propellers’, and replace each equilateral triangle with a scalene triangle such that any two
triangles sharing an edge are reflections of one another across the edge. These ‘warped
propellers’, label the left one L and the right one by R are shown in Figure 1.

First we show that warped propellers L and R are not isometric. This comes directly
from the construction: the only isometry carrying L to R must carry the central triangle of
L to the central triangle of R. Since the triangles are scalene, the only such isometry is a
translation, but a translation does not carry the rest of L to R. This shows that L and R
are not isometric.

To show that warped propellers L and R are Dirichlet isospectral, we construct two maps
from the λ-eigenspace of L to the λ-eigenspace of R. They use a technique from Riemann sur-
faces called transplantation first developed by Buser [Bus86]. In the case of planar domains,
the technique is particularly easy.
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Let fL be a Dirichlet eigenfunction of L with eigenvalue λ. Using fL, they construct a
Dirichlet eigenfunction fR of R with eigenvalue λ, called the transplantation of fL. Label
the triangles of L by 1, . . . , 7, and for each i = 1, . . . , 7, let fL,i be the restriction of fL to
triangle i. For convenience, let 1, . . . ,7 be the eigenfunctions fL,1, . . . , fL,7. In the central
triangle, we put the function fL,1 ◦ τ1 + fL,2 ◦ τ2 + fL,4 ◦ τ4, where τk is the isometry from
the central triangle of propeller R to the triangle i in propeller L. For convenience, label the
function fL,1 ◦ τ1 + fL,2 ◦ τ2 + fL,4 ◦ τ4 with 1+ 2+ 4. In the same way, construct functions
on the other triangle in propeller R using the numbers shown.

We claim that the function fR obtained from pasting together all the functions is well-
defined. Since fL is a Dirichlet eigenfunction, it vanishes on the boundary of L, or equiv-
alently by the reflection principle, extends to the function −fL in a neighborhood of the
boundary of L. This means that the functions 1,2,4 extend across their respective bound-
ary segments to the functions 0,5,−4, so the sum 1+2+4 extends to the function 0+5−4
across the shared boundary segment. Using the same technique, we can show that the other
pairs of functions defined on the triangles of R paste together properly. Therefore, fR is
well-defined.

Such a map from the λ-eigenspace of L to the λ-eigenspace of R is checked to be nonsingu-
lar, so the dimension of the λ-eigenspace of L is at most the the dimension of the λ-eigenspace
of R. The same transplantation technique works to define a map from the λ-eigenspace of
R to the λ-eigenspace of L. This shows that the λ-eigenspaces of L and R have the same
dimension. Therefore, the domains L and R are Neumann isospectral. □
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Appendix A. Covering maps

• Let (M̃, h) and (M, g) be Riemannian manifolds. π : M̃ → M is a Riemannian
covering map if π is a smooth covering map and π is a local isometry.

• A covering (deck) transformation of π is a diffeomorphism φ : M̃ → M̃ such that
π ◦ φ = π, i.e. the following diagram commutes:

M̃ M̃

M

π

φ

π

This set of covering transformations forms the covering transformation groupDeck(π).

Deck(π) acts on E. A covering map is normal if Deck(π)/M̃ ∼= M , i.e. for all x ∈ M
and any y0, y1 ∈ π−1(x), there exists φ ∈ Deck(π) such that π(y0) = y1. If the fibers
π are finite, then the covering map is called finite.

Appendix B. Trace of an operator

• A Hilbert space H is a real or complex inner product space that is also a complete
metric space with respect to the distance function induced by the inner product.

• Let A : H → H be a bounded linear operator on H, which is self-adjoint and positive
semi-definite. A is unitary if it is a bijection and preserves the inner product. Define
the trace of A to be

tr(A) =
∑
k

⟨Aek, ek⟩

for an orthonormal basis (ek) of H. It can be shown that it does not matter which
orthonormal basis (ek) one chooses, so the trace is well-defined. The operator A is of
trace class if tr(A) is finite.
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