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1. Introduction

Morse theory allows one to analyze the topology of a finite dimensional smooth manifold
by studying differentiable functions on the manifold. Morse homology is a particularly
illuminating way to understand the homology of smooth manifolds, and can be proven to be
isomorphic to the singular homology the manifold. The theory involves a generic choice of
smooth function and Riemannian metric on the manifold.
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The underlying complex in the construction, here called the Morse–Smale complex, has
somewhat of an opaque history.1 There were early suggestions of this complex by Thom
[12] and Smale [11], and an essentially equivalent complex was described in Milnor’s book
on the h-cobordism theorem [9], but not in the language of gradient flowlines. Witten’s
paper “Supersymmetry and Morse Theory” [13] had a big effect on the interpretation of
the Morse complex, and allowed for a generalization to an infinite-dimensional analogue of
Morse theory in symplectic manifolds.

In the 1980’s, Floer was working on the Arnold conjecture [1, p. 419], which was concerned
with the relationship between Morse theory and fixed points of certain diffeomorphisms of
a symplectic manifold. He developed [4] what is now known as Lagrangian Floer homology,
a type of Morse theory for Lagrangian intersections, to solve a case of the conjecture for a
large class of symplectic manifolds. There are obstacles, one being that that the language of
gradient flowlines does not extend via the classical approach to Morse homology because the
index of critical points he was led to analyze might be infinite. However, the index difference
turned out to be finite, which was exploited by Floer when constructing the Lagrangian
Floer complex.

The goal of this paper is to communicate the stories of Morse homology and Lagrangian
Floer homology side by side and draw on their similarities and differences, mostly following
the book in preparation Heegaard Floer Homology by Ozsváth, Szabó, and Stipsicz [10].
Lagrangian Floer homology is an important part of the construction of Heegaard Floer
homology, where the ambient symplectic manifold is a symmetric product of a Riemann
surface and the Lagrangian submanifolds are tori. Part of the reason I wanted to write this
paper is to collect and consolidate the main ideas behind the Morse–Smale and Lagrangian
Floer complexes.

1.1. Acknowledgement. This paper was done for my junior independent work. I would
like to thank my advisor Peter Ozsváth for his constant guidance and support throughout
the project.

1.2. Delcaration. This paper represents my own work within university regulations.

2. Morse theory

The goal of this section is to give a rapid account of the Morse theory needed for the Morse–
Smale complex. In Section 2.1, we define Morse functions and their index. In Section 2.2, we
emphasize the handlebody decomposition and Morse inequalities that will be useful context
for the construction of the Morse–Smale complex.

2.1. Morse functions. Let M be a smooth manifold, and let f : M → R be a smooth
function on M . The point p ∈ M is called a critical point if df vanishes at p. The critical
point p is called non-degenerate if in some local coordinate chart x1, . . . , xn of p, the Hessian

matrix ( ∂2f
∂xi∂xj

(p)) is invertible.

The following coordinate-free description of the Hessian will be useful, at least formally
when generalizing the Hessian to infinite dimensional manifolds. Let M be a Riemannian
manifold with a metric g, let f : M → R be a Morse function, and let p ∈ M be a critical
point. The Hessian of f at p is a map

Hessf : TpM → TpM

1This history section is taken in part from Michael Hutchings’ “Lecture notes on Morse homology”.



ON MORSE–SMALE AND LAGRANGIAN FLOER HOMOLOGY 3

characterized by the equation

g(Hessf (u), v) = u(ṽf), (1)

where u, v ∈ TpM , and ṽ is a vector field extending v to a neighborhood of p. Also, ṽf is the
directional derivative of f in the direction specified by v. The right hand side can be shown
not to depend on the extension ṽ of v.

Definition 2.1. A smooth function f : M → R is called a Morse function if each critical
point of f is nondegenerate.

Definition 2.2. If p is a non-degenerate critical point of f , its index λ(p) is the maximal
dimension of a subspace of TpX such that the Hessian is negative definite.

2.2. Important results. First of all, Morse functions exist on any compact smooth mani-
fold M , compare [8, Corollary 6.8]. To get a grip on Morse functions, the Morse lemma is
helpful, which we state now, also see [8, I.2]. Given an n-dimensional manifold M , a Morse
function f : M → R and an index k critical point p ∈ M , there exists a coordinate chart of
f around p on which f has the form

f(p)− x21 − · · · − x2k + x2k+1 + · · ·+ x2n.

From the Morse lemma, it follows that the cricial points of a Morse function are isolated.
One can extract topological information from Morse functions. Given a Morse function

f :M → R, let Mt denote f
−1(−∞, t]. Compare [8, I.3] and [10, Theorem 1.1.6].

Theorem 2.3. Let f : M → R be a Morse function, and assume that t1, t2 ∈ R are regular
values with t1 < t2. If f−1[t1, t2] contains no critical points, then Mt1 is diffeomorphic to
Mt2. If f

−1[t1, t2] contains exactly one crtical point p of index k, then Mt2 can be constructed
from Mt1 by attaching a smooth n-dimensional k-handle.

In particular, the Morse function f gives M the structure of a handlebody and hence
presents M as a CW complex.

One can also prove the Morse inequalities: for a Morse function f : M → R, if ci is the
number of critical points of index i and bi(M) is the rank of Hi(M ;F) where F is any field,
then

ci − ci−1 + ci−2 − · · ·+ (−1)ic0 ≥ bi(M)− bi−1(M) + bi−2(M) + · · ·+ (−1)ib0(M)

for all i = 0, . . . , n. See for example [8, I.5]. In particular, we inductively get that ci ≥ bi(M)
for i = 0, . . . , n. Summing over all i, we get the following topological lower bound on the
number of critical points of a Morse function:

#Crit(f) ≥
n∑
i=0

bi(M). (2)

3. The Morse–Smale complex

The goal of this section is to introduce the Morse–Smale complex and give the main idea
behind why the Morse–Smale complex is a topological invariant. In Section 3.1, we define the
Smale condition, which will be a useful hypothesis for many of the later technical results. In
Section 3.2, we introduce gradient flowlines and their moduli spaces. In Section 3.3, we define
the Morse–Smale complex. In Section 3.4 and Section 3.5, we introduce the compactness and
gluing techniques needed to show that the definition of the Morse–Smale complex is actually
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a complex. In Section 3.6, we go over the main ideas behind showing that the Morse–Smale
complex is a topological invariant, which in our case means that it does not depend on the
auxillary choice of Morse function and Riemannian metric.

3.1. The Smale condition. Let M be a smooth manifold, f be a Morse function on M
and g is a Riemannian metric on M . Let φs : M → M for s ∈ R denote the flow of the
gradient of f . Define the ascending manifold at a critical point p of f to be

A(p) = {x ∈M | lim
x→+∞

φs(x) = p}

and the descending manifold at p to be

D(p) = {x ∈M | lim
x→−∞

φs(x) = p}.

For example, consider the sphere S2 centered at the origin and standard height function
f : S2 → R. If p is the top point (0, 0, 1) and q is the bottom point (0, 0,−1), then

A(p) = S2 − {q}, D(p) = {q},
A(q) = {q}, D(q) = S2 − {p}.

If p is a critical point of index k, then A(p) can be shown to be diffeomorphic to a disk of
dimension n − k and D(p) can be shown to be diffeomorphic to a disk of dimension k, see
[2, p. 28].

Call the pair (f, g)Morse-Smale for all pairs of critical points p, q of f , the ascending mani-
fold A(p) and the descending manifold D(p) intersect transversely.2 Alternatively, sometimes
it is said that the gradient of f satisfies the Smale condition.
Suppose now that our manifold M is closed (this condition is not necessarily needed, but

it will simplify our life). Then a theorem of Smale [11] states that given a Morse function f
on M , there exists a Riemannian metric g on M such that (f, g) is Morse–Smale.

3.2. Gradient flowlines and their moduli spaces. Let M be a finite dimensional man-
ifold equipped with a Morse function f :M → R. Also equip M with a Riemannian metric
g.

Definition 3.1. Fix x,y ∈ Crit(f). A gradient flowline from x to y is a path γ : R → M
such that limt→−∞ γ(t) = x and limt→+∞ γ(t) = y and γ satisfies the gradient flow equation

dγ

dt
(t) = (−∇gf)γ(t).

We can collect all gradient lines from x to y into a moduli space M(x,y). There is a
natural R-action on M(x,y): if γ is a gradient flowline from x to y and s is a real number,
then the path τs(γ) : R →M given by t 7→ γ(t+ s) is also a gradient flowline. This R-action
on M(x,y) is called time translation. Let M̂(x,y) be the quotient of M(x,y) by the time
translation action, i.e.

M̂(x,y) = M(x,y)/R.
The moduli spaces M̂(x,y) turn out to be smooth finite dimensional manifolds. Compare

[2, p. 39] and [10, Theorem 6.1.2].

2Let P be a manifold and let M and N be two submanifolds of P . Say that M and N are transverse if
for any point u in the intersection of M and N , TuP = TuM + TuN .
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Theorem 3.2. Let M be a finite dimensional closed manifold and let f :M → R be a Morse
function on M . Choose a Riemannian metric g such that (f, g) satisfies the Smale condition.

Fix two critical points x,y of f such that x ̸= y, and consider the space M̂(x,y) of gradient

flowlines from x to y modulo time translation. Then M̂(x,y) is a smooth manifold of
dimension

dimM̂(x,y) = λ(x)− λ(y)− 1.

In particular, if λ(x) = λ(y), the moduli space M̂(x,y) is empty.

Example 3.3. Consider Sn ⊆ Rn+1 with the round metric, and consider the height function
f : Sn → R. It can be seen that f is a Morse function, and the critical points of f are the
north and south poles of Sn, call them x and y respectively. Then every gradient flowline is a

great half-circle connecting x and y, so M̂(x,y) is diffeomorphic to the equator {xn+1 = 0},
which is an (n− 1)-dimensional sphere Sn−1.

3.3. Definition of the Morse–Smale complex. This section is devoted to defining the
Morse–Smale chain complex, and then outlining the next steps in this section to make sense
of the definition. Let M be a smooth manifold, let f be a Morse function on M , let and g
be a Riemannian metric on M such that the pair (f, g) is Morse–Smale.

Definition 3.4. The Morse–Smale chain complex CM(M, f, g) is the vector space over F =
Z/2Z generated by the critical points of f and equipped with the endomorphism ∂ defined
by

∂x =
∑

{y∈Crit(f)|λ(x)−λ(y)=1}

#M̂(x,y) · y. (3)

Here, #M̂(x,y) is the parity of the number of elements in M̂(x,y).

Having arrived at the definition, there are a number of components to resolve:

(1) The definition of ∂x given in (3) is a finite sum. From Theorem 3.2, the moduli

spaces M̂(x,y) are zero dimensional manifolds. So, to make sense of the sum in (3),

we need M̂(x,y) to be compact. This is what we discuss in Section 3.4.
(2) The endomorphism ∂ satisfies ∂2 = 0, making CM(M, f, g) into a chain complex

with differential ∂. In this case, we will see that we are analyzing moduli spaces

M̂(x, z) with λ(x)−λ(z) = 2, and their boundary will be the terms in the sum ∂2x.
To properly understand the boundary, we need a gluing tool. This is outlined in
Section 3.5.

(3) The Morse–Smale complex CM(M, f, g) is independent of the choice of Morse func-
tion f and Riemannian metric g on M . The main ideas of this proof will be outlined
in Section 3.6.

Remark 3.5. One could also directly prove that CM(M, f, g) is isomorphic to the cellular
chain complex with Z/2Z coefficients provided by the CW decomposition of M from the
Morse function, see Theorem 2.3. However, the perspective that generalizes to the case of
Lagrangian Floer homology by directly analyzing the moduli spaces of gradient flowlines.
This is the perspective we take in Section 3.6.

Example 3.6. Let our manifold be the torus T 2, thought of as a quotient of [0, 1] × [0, 1],
and consider the function f : T 2 → R given by

f(x, y) = cos 2πx+ sin 2πx.
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Figure 1. An example of gradient flow on the torus.

This function is Morse, and it has a single critical point a of index zero, two critical points
b, c of index 1, and one critical point d of index 2. Giving the torus the flat metric, we see
that the gradient flowlines are as drawn in Figure 1. We conclude that

∂a = 0, ∂b = ∂c = 2a = 0, ∂d = 0,

so the Morse–Smale homology groups are equal to the complex groups H0 = Z/2Z, H1 =
Z/2Z⊕ Z/2Z, H2 = Z/2Z. These are the singular homology groups of T 2.

Remark 3.7. Morse Theory can be generalized to consider functions whose critical sets are
submanifolds, called Morse–Bott theory. In this version of the story, a Morse–Bott function
is a smooth function on a manifold whose critical set is a closed submanifold and whose
Hessian is nondegenerate in the normal direction of every point. A Morse function is a
special case where the critical points are zero dimensional, so the Hessian is critical in every
direction, or equivalently, has no kernel. Bott [3] used Morse–Bott theory in his original
proof of the Bott periodicity theorem.

3.4. Compactness. The goal of this section is to give the necessary tools needed to show
that the endomorphism ∂ in the definition of CM(M, f, g) is finite. Let x and y be critical
points of a Morse function f :M → R. A broken flowline from x to y is a sequence of distinct
critical points x1, . . . ,xn+1 with x1 = x and xn+1 = y, and a collection of gradient flowlines

α1, . . . , αn, where αi ∈ M̂(xi,xi+1). A sequence of flowlines {γm}∞m=1 in M̂(x,y) converges
to a broken flowline (α1, . . . , αn) if for each j, we can find representatives γji ∈ M(x,y) for

γi ∈ M̂(x,y) such that {γji }∞i=1 converges to αj in the C∞,loc topology. Broken flowlines give
a compactification of the space of flowlines in the following sense. Compare [10, Theorem
6.2.3].

Theorem 3.8 (Compactness theorem). Let x and y be critical points of f with x ̸= y.
Then any sequence of gradient flowlines from x to y has a C∞,loc-convergent subsequence to
a broken flowline from x to y.

Proposition 3.9. For a genereic enough choice of metric g, the zero-dimensional moduli

spaces M̂(x,y) with λ(x)− λ(y) = 1 are compact in the C∞ topology.

Proof. By Theorem 3.8, any sequence of gradient flowlines from x to y has a convergent

subsequence to a broken flowline (α1, . . . , αn), where αi ∈ M̂(xi,xi+1) for some distinct
critical points x1, . . . ,xn+1 such that x1 = x and xn+1 = y. The key observation is that any
broken flowline connecting x and y such that λ(x)− λ(y) = 1 is in fact unbroken.
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Suppose otherwise that there is more than one unbroken flowline, meaning n > 1. Since
λ(x) − λ(y) = 1, we have that 1 =

∑n
i=1 λ(xi) − λ(xi+1), which implies that λ(xi) −

λ(xi+1) ≤ 0 for some i. However, there is no class of flowlines in the space M̂(xi,xi+1) by
Theorem 3.2. □

The above proposition implies that the moduli spaces M̂(x,y) do indeed have finitely
many elements, so the right hand side of equation (3) is a finite sum.

3.5. Gluing. In this section we outline the proof of the operator ∂ in CM(M, f, g) satisfying
∂2 = 0, making CM(M, f, g) into a chain complex.
For a critical point x ∈ Crit(f), applying the differential twice gives the sum

∂2x =
∑

{y∈Crit(f)|λ(x)−λ(y)=1}

#M̂(x,y) · ∂y

=
∑

{y∈Crit(f)|λ(x)−λ(y)=1}

#M̂(x,y)
∑

{z∈Crit(f)|λ(y)−λ(z)=1}

#M̂(y, z) · z

=
∑

{y,z∈Crit(f)|λ(x)−λ(y)=1,λ(y)−λ(z)=1}

#M̂(x,y)#M̂(y, z) · z.

So we need to show that for any z ∈ Crit(f) such that λ(x)− λ(z) = 2,

#M̂(x,y)#M̂(y, z) ≡ 0 (mod 2). (4)

To prove this, we need to consider the compactification of M̂(x, z) for λ(x) − λ(z) = 2
by broken trajectories. The compactification is proven to be a compact one dimensional
manifold, whose boundary is precisely the space of broken flowlines⋃

{y∈Crit(f)|λ(x)−λ(y)=1}

M̂(x,y)× M̂(y, z). (5)

The boundary of this compact 1-manifold consists of an even number of points, showing
that (4) holds.

The main ingredient for this compactification result is the following gluing theorem. Com-
pare [10, Theorem 6.2.6].

Theorem 3.10 (Gluing theorem). Suppose x,y, z are critical points of f such that λ(x) =

λ(y) + 1 = λ(z) + 2. Then for any broken flowline (α1, α2) ∈ M̂(x,y) × M̂(y, z), there
exists a real number ρ0 and a smooth map

f : [ρ0,∞) → M̂(x, z)

such that f(ρ) converges to (α1, α2) as ρ → ∞. Moreover, if the sequence {γn} in M̂(x, z)
converges to (α1, α2), then for large enough n,

γn ∈ f [ρ0,∞).

The result is called a gluing result because to show that such a map f : [ρ0,∞) → M̂(x, z)
exists, we approximate the broken flowline (α1, α2) by a glued flowline depending on the
parameter ρ.

This theorem shows that the boundary of the compactification of M̂(x, z) for λ(x)−λ(z) =
2 is indeed the union in (5): the compactification Theorem 3.8 shows that any convergent
sequence of flowlines coverges to a broken flowline, and Theorem 3.10 shows that given a
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broken flowline (α1, α2) ∈ M̂(x,y)× M̂(y, z), the function f gives a sequence of unbroken
flowlines converging to (α1, α2).
Thus, with the gluing result in hand, this implies that (CM(M, f, g), ∂) is a chain complex.

3.6. Independence and invariance. In this section we give insight into the proof of why
the Morse–Smale complex CM(M, f, g) only depends on the manifold M , i.e. does not
depend on the choice of Morse function f : M → R and the choice of Riemannian metric g
on M .
First we start with the independence of the Morse–Smale complex from the choice of

Riemannian metric g, while fixing f . Consider two metrics g0, g1 such that the gradient flow
equation is Morse–Smale for both (See Section 3.3). We consider “time-dependent gradient
flowlines” between two critical points x and y of f , which are maps γ : R → M such that
limt→−∞ = x, limt→+∞ γ(t) = y and γ satisfies the time-dependent gradient flow condition

dγ

dt
= −∇gψ(t)

fγ(t)

for some smooth monotone function ψ : R → [0, 1] such that ψ(t) = 0 for t ≤ 0 and
ψ(t) = 1 for t ≥ 1. Let M{gt}(x,y) of time-dependent flowlines from x to y. Note that the
time-dependent gradient flow condition is no longer invariant under time translation.

Theorem 3.2 can be adapted to the time-dependent case. Compare [10, Theorem 6.3.1].

Theorem 3.11. Let Mn be a closed n-dimensional manifold, and let g0 and g1 be two
Riemannian metrics on M . For a sufficiently generic path of Riemannian metrics {gt}
from g0 to g1, and for two critical points x and y of f such that x ̸= y, the moduli space
M{gt}(x,y) is a smooth manifold with dimension

dimM{gt}(x,y) = λ(x)− λ(y).

From now on, omit M from the notation of the Morse–Smale complex, so for example,
CM(f, g0) is the Morse–Smale complex of M with Morse function f and Riemannian metric
g0 on M . To show that CM(f, g0) and CM(f, g1) have the same homology groups, we define
what are known as continuation maps

Ψ{gt} : CM(f, g0) → CM(f, g1)

and
Ψ{g1−t} : CM(f, g1) → CM(f, g0).

These maps are designed such that such that Ψ{gt},Ψ{g1−t} are chain maps, and Ψ{gt}◦Ψ{g1−t}
and Ψ{g1−t} ◦Ψ{gt} are chain homotopic to the (respective) identity maps.
First we need to discuss the broken line compactification of M{gt}(x,y). Given the fol-

lowing information:

• sequences of critical points x1, . . . ,xn with x1 = x and y1, . . . ,ym with ym = y;

• gradient flows αi ∈ M̂g0(xi,xi+1) for i = 1, . . . , n − 1 and gradient flows βi ∈
M̂g1(yi,yi+1) for i = 1, . . . ,m− 1;

• a time-dependent gradient flowline γ ∈ M{gt}(xn,y1),

there is an analogue of the compactification Theorem 3.8 (compare [10, pp. 121]):

Theorem 3.12. Let x and y be critical points of f with x ̸= y. Any sequence of time-
dependent gradient flowlines from x to y has a C∞,loc-convergent subsequence to a broken
flowline (α1, . . . , αn, γ, β1, . . . , βm).
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Adapting the argument from the proof of Proposition 3.9, we get that the spaceM{gt}(x,y)
is a compact, zero-dimensional manifold.

Now we can define the continuation map Ψ{gt} : CM(f, g0) → CM(f, g1) by

Φ{gt}(x) =
∑

{y∈Crit(f)|λ(x)=λ(y)}

#M{gt}(x,y) · y,

which is a finite sum because #M{gt}(x,y) is finite. Analogously define Φ{g1−t} : CM(f, g1) →
CM(f, g0) by

Φ{g1−t}(x) =
∑

{y∈Crit(f)|λ(x)=λ(y)}

#M{g1−t}(x,y) · y.

The idea of the proof that Φ{gt} is a chain map is as follows. We consider the ends of the
moduli space M{gt}(x,y) with λ(y) = λ(x)−1. In can be proven that by adding the broken
flowlines, the compactification of M{gt}(x,y) is a compact 1-manifold which has boundary⋃
{x′∈Crit(f)|λ(x′)=λ(y)}

M̂g0(x,x
′)×M{gt}(x

′,y) ∪
⋃

{y′∈Crit(f)|λ(y′)=λ(x)}

M{gt}(x,y
′)× M̂g1(y

′,y).

There is a compactness result showing that all of the ends of M{gt}(x,y) are contained in
the above union, and there is a gluing result that shows that any sequence of time dependent
gradient flowlines in M{gt}(x,y) converges to a broken flowline in the above union.
The ends of M{gt}(x,y) are precisely the coefficient of y in

Φ{gt}(∂g0(x)) + ∂g1(Φ{gt}(x)),

where ∂gi is the boundary map in CM(f, gi). Thus because a compact 1-manifold has an
even number of boundary components and we are working modulo 2,

Φ{gt} ◦ ∂g0 − ∂g1 ◦ Φ{gt} = 0,

meaning that Φ{gt} is a chain map.
It remains to show that we can construct a homotopy operator H : CM∗(f, g0) →

CM∗+1(f, g0) such that
∂ ◦H +H ◦ ∂ = id+Φ{g1−t} ◦ Φ{gt}. (6)

The homotopy operator H will count time-gradient flowlines in a two-dimensional sense: let
{gr,t}r∈[0,∞),t∈R be a two-parameter family of metrics such that the following conditions hold:

• g0,t = g0,
• for t > 1, gr,t = gψ(r+t),
• for t < −1, gr,t = gψ(1−r−t),

where ψ : R → [0, 1] is the same smooth monotone function such that ψ(t) = 0 for t ≤ 0
and ψ(t) = 1 for t ≥ 1. Notice that for large r, the family gr,t looks like the path {g1−t},
followed by the constant path g0 for a long time, and then the path {gt}.
Consider the moduli space M{gr,t}(x,y) of pairs of r ∈ [0,∞) and a path γ : R → M

satisfying the usual asymptotics limt→−∞ γ(t) = x, limt→+∞ γ(t) = y and the time-dependent
gradient flow equation

dγ

dt
= −∇gr,tfγ(t).

There is an analogue of Theorem 3.11 which prove that the moduli space M{gr,t}(x,y) of
such pairs (r, γ) is a manifold of dimension λ(x) − λ(y) + 1 (intuitively, there is an extra
dimension from the r parameter).
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The broken line compactification of Mgr,t(x,y) is described as follows. Let (ri, γi) be a
sequence in Mgr,t(x,y). Such a sequence (ri, γi) has a convergent subsequence in the com-
pactified space. This subsequence could converge in M{gr,t}(x,y), or otherwise, projecting
to the r coordinate, there could be one of the following behaviors:

(1) ri → ρ for some real number ρ ∈ (0,∞). In this case, γ1 converges to a broken
time-dependent flowline with respect to the path {gρ,t}t∈[−ρ,ρ].

(2) ri → 0. In this case, {γi} has a subsequence that converges to a (possibly broken)
gradient flowline for the g0 metric.

(3) ri → ∞. In this case, {γi} converges to a juxtaposition of two (possibly broken) time-
dependent flowlines, starting with the {gt} family and then for the {g1−t} family.

Compactness and transversality arguments show that for x,y such that λ(y) = λ(x) + 1,
the moduli space M{gr,t}(x,y) is a compact zero-dimensional manifold, i.e. a finite number
of points.

Define the homotopy operator H : CM∗(f, g0) → CM∗+1(f, g0) by the equation

H(x) =
∑

{y∈Crit(f)|λ(y)=λ(x)+1}

#M{gr,t}(x,y) · y.

To prove equation (6), we consider moduli spaces M{gr,t}(x,y) where λ(y) = λ(x). A
transversality argument shows that the ends of M{gr,t}(x,y) appearing in cases (2) and (3)
are unbroken, and so are part of the union

M̂g0(x,y) ∪
⋃

{z∈Crit(f)|λ(x)=λ(z)}

M{gt}(x, z)×M{g1−t}(z,y), (7)

and the ends appearing in case (1) belong to the union⋃
{x′∈Crit(f)|λ(x′)=λ(x)−1}

M̂g0(x,x
′)×M{gr,t}(x

′,y)∪
⋃

{y′∈Crit(f)|λ(y′)=λ(y)+1}

M{gr,t}(x,y
′)×M̂g0(y

′,y).

(8)
and the union of (7) and (8) is precisely the ends of M{gr,t}(x,y) by a gluing argument. The
number of ends of M{gr,t}(x,y) is even because it is a compact one-dimensional manifold,
and the set of such ends is precisely what is counted in ∂ ◦H +H ◦ ∂ + id+Φ{g1−t} ◦ Φ{gt}.
Therefore, (6) holds, implying that Φgt : CM(f, g0) → CM(f, g1) is indeed a chain homotopy
equivalence, i.e. there is no dependence on the metric.

To show that the homology of CM(M, f, g) is independent of the choice of Morse func-
tion function, we similarly interpolate between two choices of Morse functions, count time-
dependent trajectories (except this time the dependence is in the Morse function), collect
them into moduli spaces, define continuation maps, and so forth.

4. Symplectic geometry

The goal of this section is to give the symplectic geometry background necessary for
the construction of Lagrangian Floer homology. We end with the Arnold conjecture, Floer’s
motivation for the development of Lagrangian Floer homology. In Section 4.1, we define sym-
plectic manifolds and Lagrangian submanifolds. In Section 4.2, we introduce almost-complex
structures. In Section 4.3, we motivate and state a few versions the Arnold conjecture.
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4.1. Symplectic manifolds and Lagrangian submanifolds. We follow [10, Chapter 5].
Let M be a 2n-dimensional smooth manifold. A symplectic form on M is a smooth 2-form
ω ∈ Ω2(M ;R) which is closed (dω = 0), and is non-degenerate, meaning that the n-fold
wedge product of ω in Ω2n(M) vanishes nowhere. A symplectic manifold is a pair (M,ω),
where ω is a symplectic form on M . The top exterior power of ω can be viewed as a volume
form on M , with respected to a preferred orientation of M . We assume that M is oriented
with this preferred orientation.

The space R2n is a symplectic manifold with the standard symplecitc form ωst on R2n given
by

ωst =
n∑
i=1

dxi ∧ dyi.

This form is closed and non-degenerate. Another important example of a symplectic manifold
is the cotangent bundle T ∗L of a (real) n-dimensional manifold L. Let π : T ∗L → L be the
projection map. For fixed η ∈ T ∗L, take the differential of π map at η to get the map
Tπη : Tη(T

∗L) → Tπ(η)L. Then the composition

Tη(T
∗L) Tπ(η)L RTπη η

sending v ∈ Tη(T
∗L) to η(Tπη(v)) induces a 1-form λ ∈ Ω1(T ∗M), where M = T ∗L,

called the Liouville form. The claim is that (T ∗L,−dλ) is a symplectic manifold. The form
−dλ is closed because it is exact. The form −dλ is non-degenerate by the following local
computation. On local coordinate chart with coordinates x1, . . . , xn, we have that there is
an induced local coordinate system on T ∗Rn given by the map

Rn × Rn → T ∗Rn

(x1, . . . , xn, y1, . . . , yn) 7→

(
x1, . . . , xn,

n∑
i=1

yidxi

)
.

With respect to this trivialization, λ =
∑
yidxi, which implies that −dλ is equal to the

standard symplectic form
∑
dxi ∧ dyi on Rn. In particular, −dλ is nondegenerate.

Let (M2n, ω) be a symplectic manifold, and let Ln ⊆ M2n be an n-dimensional submani-
fold. Say that L is Lagrangian if the restriction of ω to L vanishes identically. For example,
for any smooth manifold L, the zero-section of the cotangent bundle T ∗L, equipped with the
symplectic structure −dλ from the previous paragraph, is a Lagrangian submanifold.

4.2. Almost-complex structures. An almost complex structure J on a smooth manifold
M is a bundle automorphism J : TM → TM such that J ◦ J = − idTM . If (M,ω) is a
symplectic manifold, an almost-complex structure J is ω-tame if ωp(v, Jpv) > 0 for each
p ∈ M and nonzero p ∈ TpM . The following is an important theorem about the existence
and space of ω-tame almost complex structures. Compare [10, Theorem 5.3.12].

Theorem 4.1. A symplectic manifold (M,ω) always admits ω-tame almost-complex struc-
tures and the space of ω-tame almost-complex structures is contractible.

Given (M,ω) and an ω-tame J , there is an associated Riemannian metric g on M given
by the formula

gp(v, w) =
1

2
(ωp(v, Jpw) + ω(w, Jpv)), (9)

for each p ∈M and v, w ∈ TpM .
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4.3. Hamiltonian diffeomorphisms and the Arnold conjecture. Fix a symplectic
manifold (M,ω). Let H : [0, 1] × M → R be any smooth time dependent function, and
for fixed t, let Ht :M → R be given by Ht(x) = H(t, x). Choose the time-dependent vector
field Xt given by the equation

ω(Xt, ·) = dHt(·),

where · can be replaced with any smooth vector field. Then Xt is called a Hamiltonian vector
field. Consider the ordinary differential equation for paths z : [0, 1] →M ,

dz

dt
= Xt(z).

Its solutions define a smooth arc t 7→ Φt for t ∈ [0, 1] of smooth diffeomorphisms starting at
Φ0 = idM . The time-1 map Φ1 is called a Hamiltonian diffeomorphism. Call a Hamiltonian
diffeomorphism φ : M → M nondegenerate if its graph intersects the diagonal of M ×M
transversely.

Arnold [1, p. 419] conjectured that the number of fixed points of a nondegenerate Hamil-
tonian diffeomorphism is at least the minimum number of critical points of a Morse function
on M . (This happens to be is true if the Hamiltonian diffeomorphism is generated by a
Hamiltonian function which is small enough in C2-norm.) Compare with [7, Conjecture
1.2.4].

Conjecture 4.2 (The Arnold conjecture). Let (M,ω) be a compact symplectic manifold.
For a nondegenerate Hamiltonian diffeomorphism ϕ,

#{fixed points of ϕ} ≥ min
f

#Crit(f),

where the minimum goes over all Morse functions f :M → R.

In view of the inequality

#Crit(f) ≥
n∑
i=0

bi(M)

obtained from the Morse inequalities (2), we have the following conjecture, also known as
the Arnold conjecture.

Conjecture 4.3 (The Arnold conjecture). Fix a field F. Let ϕ : M → M be a nondegen-
erate Hamiltonian diffeomorphism of M . Then the number of fixed points of ϕ is at least
dimFH∗(M ;F).

The above conjecture can be obtained as a special case of the following conjecture, where
the ambient symplectic manifold is (M ×M, p∗1(ω) − p∗2(ω)), and pi is projection onto the
i-th factor for i = 1, 2. Compare [10, Conjecture 7.1.5]

Conjecture 4.4 (The Arnold conjecture). Fix a field F. If L is a closed Lagrangian sub-
manifold in a closed symplectic manifold (M,ω) and ϕ :M2n →M2n is a Hamiltonian such
that L and ϕ(L) intersect transversely, then the number of intersection points of L and ϕ(L),
denoted |L ∩ ϕ(L)|, satisfies

|L ∩ ϕ(L)| ≥ dimFH∗(L;F).
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5. Lagrangian Floer homology

The goal of this section is to introduce the construction of Lagrangian Floer homology
and how Floer [4] uses it to important case Arnold’s conjecture. Here is a nutshell of the
story. The Lagrangian Floer complex takes in a symplectic manifold M and two Lagrangian
submanifolds L0 and L1. It is generated by the intersection points of L0 and L1. To under-
stand its differential, we turn to the action functional, which acts on the space of paths from
L0 to L1, and whose critical points are the constant paths at the intersection points of L0

and L1. The idea is to apply a variant of Morse theory on the action functional, where the
critical points of the functional are the intersection points of two Lagrangians. Connecting
two intersection points by a gradient flow equation gives the notion of a pseudo-holomorphic
strip. However, when computing the index of these critical points, we run into the issue
that the index might be infinite. This issue is resolved with a relative quantity, the Maslov
index. In any case, the differential roughly counts the number of pseudo-holomorphic strips
between pairs of intersection points.

With this in place, here is an outline for this section. In Section 5.1, we explain the
bigger idea behind the Lagrangian Floer complex, specifically how it helps prove the Arnold
conjecture. In Section 5.2, we introduce the action functional and then proceed via the story
of Morse Theory by computing its critical points, its Hessian, and so forth. In Section 5.3,
we introuce Whitney disks, which resemble pseudo-holomorphic strips but with no analytical
constraints. In Section 5.4, we discuss the Lagrangian Grassmannian, the construction of
the Maslov index, and give an example computation of the Maslov index. In Section 5.5, we
introduce pseudo-holomorphic strips and their moduli spaces. In Section 5.6, we define the
Lagrangian Floer complex. In Section 5.7 and Section 5.8, we introduce the compactness
and gluing techniques needed to show that the Lagrangian Floer complex is a complex. In
Section 5.9, we go over the main ideas behind showing that the Lagrangian Floer complex
is independent of auxillary chpoices and is also invariant under Hamiltonian isotopies, a
property baked into the definition to prove the Arnold conjecture.

Most of this section closely follows [10, Chapter 7].

5.1. The bigger idea. Floer [5] proved Arnold’s Conjecture 4.4 for the case of symplectic
manifolds (M,ω) such that π2(M) = 0 and π2(M,L) = 0. Assume that we have fixed a
symplectic manifold (M,ω) with these properties. Floer’s approach was to define what is
now known as the Lagrangian Floer complex CF(L0, L1), over F = Z/2Z, is associated to
a pair of transversally intersecting, compact, oriented Lagrangian submanifolds L0 and L1.
This complex has the following properties:

(1) The complex CF(L0, L1) is generated by the intersection points of L0 and L1.
(2) The homology groups HF (L0, L1) only depend on the symplectic manifold and its

two Lagrangian submanifolds.
(3) The homology groups HF (L0, L1) are invariant under Hamiltonian isotopy, in the

following sense: if ϕ0, ϕ1 :M →M are Hamiltonian diffeomorphisms and ϕ0(L0) and
ϕ1(L1) intersect transversally, then

HF (L0, L1) ∼= HF (ϕ0(L0), ϕ1(L1)).

This property allows us to extend the homology groups HF (L0, L1) to cases where L0

and L1 don’t intersect transversally: let L′
1 be a Hamiltonian translate of L1 which

intersects L0 transversally, and define HF (L0, L1) to be HF (L0, L
′
1).
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(4) The homology groups HF (L,L) are isomorphic to the singular homology of L with
Z/2Z coefficients.

(5) The homology groups HF (L0, L1) are graded by Z/2Z: each intersection point x of
L0 and L1 has a local intersection number i(x) ∈ {±1}. The Z/2Z-grading gr(x) is
defined by

(−1)gr(x) = i(x).

First, notice that the existence of a theory satisfying (1),(2),(3),(4) implies Arnold’s con-
jecture, which we argue as follows. Notice that HF (L ∩ ϕ(L)) is HF (L,L) by property (3)
and HF (L,L) is the singular homology of L by property (4). Since the number of generators
of a complex is at least the Z/2Z-dimension of its homology,

|L ∩ ϕ(L)| ≥ dimZ/2ZH∗(L;Z/2Z).

Also in view of (1),(2),(3), Lagrangian Floer homology can be viewed as an obstruction to
making L0 disjoint from L1 via Hamiltonian isotopies.

5.2. The action functional. Let (M2n, ω) be a symplectic manifold with compact La-
grangian submanifolds L0 and L1. Consider the space of paths V from L0 to L1,

V = {γ : [0, 1] →M | γ(0) ∈ L0, γ(1) ∈ L1}.

Let’s assume that all paths in V are smooth.
A path in V is a map

u : [0, 1]× [0, 1] →M2n

such that for all t ∈ [0, 1], u(t, 0) ∈ L0 and u(t, 1) ∈ L1.
Let’s first discuss the action functional in the case when our symplectic manifold M is

exact, meaning that ω = dα for some 1-form α, and the Lagrangain submanifolds are exact.
A Lagrangian submanifold L of an exact symplectic manifold M is called exact if there
exists a function f : L → R such that α|L = df . In our case, we have two exact Lagrangian
submanifolds L0 and L1, so choose fi for i = 0, 1 such that α|Li = dfi.

5.2.1. Action functional in exact case. Define the action functional A on V by the following
formula on a path γ : [0, 1] →M in V :

A(γ) = f0(γ(0))− f1(γ(1)) +

∫
[0,1]

γ∗(α).

There is another interpretation of the action functional, which determines it up to an
additive constant, that will be useful to us when generalizing to the non-exact case. Suppose
γ0, γ1 are in the same path component of V , so there exists a path u : [0, 1] × [0, 1] → M
such that for all t ∈ [0, 1], u(t, 0) ∈ L0, u(t, 1) ∈ L1, u(0, s) = γ0(s), and u(1, s) = γ1(s).

Lemma 5.1. The action functional satisfies the following formula:

A(γ1)−A(γ0) =

∫
(t,s)∈[0,1]×[0,1]

u∗(ω). (10)

Proof. Since u∗(ω) = du∗(α), by Stokes’ theorem,∫
[0,1]2

u∗(ω) =

(∫
[0,1]×0

+

∫
1×[0,1]

+

∫
[1,0]×1

+

∫
0×[1,0]

)
u∗(α). (11)
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Since L0 is exact, by Stokes’ theorem,∫
[0,1]×0

u∗(α) = f0(γ1(0))− f0(γ0(0)),

and since L1 is exact, by Stokes’ theorem,∫
[1,0]×1

u∗(α) = f1(γ0(1))− f1(γ1(1)).

Using the fact that
∫
1×[0,1]

u∗(α) =
∫
[0,1]

γ∗1(α) and
∫
0×[1,0]

u∗(α) = −
∫
[0,1]

γ∗0(α), and collecting

all terms on the right-hand side of (11),∫
[0,1]2

u∗(ω) =

(
f0(γ1(0))− f1(γ1(1)) +

∫
[0,1]

γ∗1(α)

)
−
(
f0(γ0(0))− f1(γ1(1)) +

∫
[0,1]

γ∗0(α)

)
= A(γ1)−A(γ0).

□

Proposition 5.2. The critical points of A are the constant paths γ : [0, 1] → L0 ∩ L1.

Proof. A path γ : [0, 1] → M with γ(0) ∈ L0 and γ(1) ∈ L1 is a critical point for the action
functional A if for every smooth extension of γ,

u : [−ϵ, ϵ]× [0, 1] →M

such that u(t, 0) ∈ L0, u(t, 1) ∈ L1, and γ(s) = u(0, s), the value t = 0 is a critical point for
the real valued function

t 7→ A(u|{t}×[0,1]).

The path u is also called a variation of γ. Let’s use the shorthand ut for u|{t}×[0,1], so that
the real valued function above becomes

t 7→ A(ut).

Note that by Lemma 5.1, A(ut)−A(u0) =
∫
[0,t]×[0,1]

u∗(ω). So

d

dt

∣∣∣∣
t=0

A(ut) =
∂

∂t

∣∣∣∣
t=0

∫
[0,t]×[0,1]

u∗(ω)

=
∂

∂t

∣∣∣∣
t=0

∫
[0,t]×[0,1]

ω

(
∂u

∂t
,
∂u

∂s

)
dt ∧ ds

=

∫
[0,1]

ω

(
∂u

∂t
(0, s),

∂u

∂s
(0, s)

)
ds.

Since ∂u
∂t
(0, s) can be chosen to be any arbitrary smooth function with compact support in

(0, 1) and ω is non-degenerate, at each critical point we have that ∂u
∂s

≡ 0. This implies that

γ(s) = u0(s) is a constant path. Also it is clear that if γ is the constant path, then ∂u
∂s

≡ 0,
so

d

dt

∣∣∣∣
t=0

A(ut) = 0

for all variations u. □
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We have computed the critical points of A, now onto the gradient of A. First we need to
discuss the notion of a tangent vector at V . A tangent vector at a path γ in V is a vector
field

v : [0, 1] → TM

lifting γ, i.e. the following commutes,

[0, 1] TM

M

v

γ
π

where π : TM →M is the projection map, and v satisfies the boundary conditions

v(0) ∈ Tγ(0)L0 ⊆ Tγ(0)M, v(1) ∈ Tγ(1)L1 ⊆ Tγ(1)M.

Since we have fixed ω in our symplectic manifold, there exists an ω-tame almost complex
structure J , giving a Riemannian metric g defined by the formula

gp(v, w) =
1

2
(ωp(v, Jpw) + ω(w, Jpv)),

for each p ∈M and v, w ∈ TpM , see (9). The Riemannian metric g gives rise to a Riemannian
metric on the path space V , given by the formula

⟨v, w⟩ =
∫
[0,1]

⟨v(s), w(s)⟩ ds

for two vector fields v, w along γ.
We claim that the gradient of A at γ, denoted ∇Aγ ∈ TγV , is the vector field along γ

given by

s 7→ −Jγ(s)
dγ

ds
.

Let’s again adopt the notation ut = u(t, s). Note that

∂

∂t

∣∣∣∣
t=0

A(ut) =

∫
[0,1]

ω

(
v,
∂u

∂s

)
ds,

where v(s) = ∂u
∂t
(0, s). Since ω(v, ∂u

∂s
) = −g(v, J ∂u

∂s
),

∂

∂t

∣∣∣∣
t=0

A(ut) =

〈
v,−J ∂u

∂s
(0, s)

〉
=

〈
v,−J ∂γ

∂s

〉
.

Having defined the gradient, we formulate an upward gradient flowlines. Fix x,y ∈ L0∩L1,
which are critical points of the action functional A by Proposition 5.2. An upward gradient
flowline for A is a map

u : R× [0, 1] →M2n

satisfying the “gradient flow” equation

∂u

∂t
+ Ju(t,s)

∂u

∂s
= 0 (12)

and having boundary conditions u(t, 0) ∈ L0, u(t, 1) ∈ L1 for all t ∈ R, and limt→−∞ u(t, s) =
x and limt→+∞ u(t, s) = y. The map u satisfying the previous conditions is called a pseudo-
holomorphic strip. The term “pseudo-holomorphic strip” is meant to emphazie the fact that
the complex structure J on M is not necessarily integrable, i.e. it is not induced from a
complex manifold by multiplication by i on the tangent bundle.
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5.2.2. Action functional in the non-exact case. Define the action functional A on path com-
ponents of the path space V using equation (10):

A(γ1)−A(γ0) =

∫
(t,s)∈[0,1]×[0,1]

u∗(ω).

There are a couple of issues. First of all, A is defined up to an additive constant so far.
Second, and more importantly, A(γ1)−A(γ0) depends on the choice of pseudo-holomorphic u
up to homotopy. However, we can fix the second problem if we consider γ0 and γ1 sufficiently
close, so that u is sufficiently short, the above equation makes sense.

5.2.3. Hessian of the action functional. If γ : [0, 1] →M is the constant path at x ∈ L0∩L1,
then we prove that the Hessian at γ is formally the operator

HessA : v 7→ −J dv
ds

(13)

for v ∈ TγV . So, the nullspace of the Hessian is TxL0 ∩ TxL1.
Recall coordinate-free description the Hessian at a critical point of a finite dimension in

equation (1). With this in mind, suppose

u : [−ϵ, ϵ]× [−ϵ, ϵ]× [0, 1] →M

is a two-parameter family of paths indexed by (τ, t) ∈ [−ϵ, ϵ]× [−ϵ, ϵ], and u(0, 0, s) = γ(s).
Denote the two tangent vectors in TγV corresponding to ∂

∂t
|t=0u(0, t, s) and

∂
∂τ
|τ=0u(τ, 0, s)

by v and w respectively.
Then

∂

∂τ

∫
[0,1]

〈
−J ∂u

∂s
,
∂u

∂t

〉
ds =

∂

∂τ

∫
[0,1]

〈
J
∂u

∂t
,
∂u

∂s

〉
ds =

∫
[0,1]

〈
J
∂u

∂t
,
∂2u

∂s∂τ

〉
ds

=

∫
[0,1]

〈
−J ∂2u

∂s∂τ
,
∂u

∂t

〉
ds =

∫
[0,1]

〈
−J ∂w

∂s
, v

〉
ds.

This shows that the Hessian of A is of the form in (13). In particular, A is a non-degenerate
Morse function if and only if L0 and L1 intersect each other transversely.
It is important to keep in mind that the Hessian need not have finite index, as the following

example illustrates

Example 5.3. SupposeM = C with two Lagrangian submanifolds L0 = R and L1 = e2πiθ ·R.
The two Lagrangians intersect at 0, so let γ be the constant path at 0. Then TγV consists
of vector fields v : I → TM such that π ◦ v = γ, where π : TM →M is the projection map.
Since γ is a constant path, this means that v maps into T0C = C. Thus we can interpret v
as a path in C.
To compute the eigenvectors and eigenvalues of the Hessian, we need to solve the equation

λv = HessA(v) = −idv
ds
.

The solutions of this equation are v(s) = re2πis(θ+n) for n ∈ 1
2
Z. Thus the eigenvalues are

2π(θ + n) for n ∈ 1
2
Z. In particular, the Hessian has infinitely many positive and negative

eigenvalues.

However, there is a well-defined relative quantity, the Maslov index, which plays the role
of the difference of the indices.
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5.3. Whitney disks. Fix x,y ∈ L0 ∩L1. A Whitney strip from x to y is a continuous map

u : R× [0, 1] →M2n

satisfying the boundary conditions u(R× {0}) ⊆ L0, u(R× {1}) ⊆ L1, and the asymptotics

lim
t→∞

u(t, s) = x, lim
t→−∞

u(t, s) = y.

It is natural to reformulate the condition of a Whitney strip in terms of disks. Let D denote
the standard disk in C and fix x,y ∈ L0 ∩ L1. A Whitney disk from x to y is a continuous
map

u : D →M2n

such that for z ∈ D,
• u(z) ∈ L0 if |z| = 1 and Re(z) > 0 and u(z) ∈ L1 if |z| = 1 and Re(z) < 0,
• u(−i) = x and u(−i) = y.

In particular, any pseudo-holomorphic strip gives rise to a Whitney disk using the conformal
diffeomorphism R× [0, 1] ∼= D \ {±i}.

It will useful for us to consider homotopy classes of disks, which are defined as follows.
Fix x,y ∈ L0 ∩ L1. and two Whitney disks u0 and u1 from x to y. A homotopy from u0 to
u1 is a map

u : D× [0, 1] →M

such that for z ∈ D and t ∈ [0, 1]:

• u(z, t) ∈ L0 if |z| = 1 and Re(z) > 0, and u(z, t) ∈ L1 if |z| = 1 and Re(z) < 0,
• u(−i, t) = x and u(i, t) = y, and
• u(z, 0) = u0(z) and u(z, 1) = u1(z).

The set of homotopy classes of Whitney disks from x to y is denoted W (x,y.
Given x1,x2,x3 ∈ L0 ∩ L1 and Whitney disks u1 from x1 to x2 and u2 from x2 to x3,

the juxtaposition u1 ∗ u2 is defeined as follows. Consider the quotient map q : D → D ∨ D,
where D∨D is the disk with the real interval collapsed to a point, and the homeomorphism
D ∨ D = D1 ⊔ D2/(i ∈ D1) ∼ (−i ∈ D2). The map u1 ∗ u2 is the composite map

D D ∨ D M.
q u1∨u2

The map ∗ only depends on the homotopy class of the Whitney disks, giving rise to a map
∗ : W (x1,x2) × W (x2,x3) → W (x1,x3). A homotopy class of Whitney disks moreover
determines a relative homotopy class in π2(M,L0 ∪ L1) and hence a relative homology class
in H2(M,L1 ∪ L1).

5.4. The Maslov index.

5.4.1. The Lagrangian Grassmannian. If (V 2n, ω) is a symplectic vector space, call the sub-
space Λ ⊆ V 2n Lagrangian if dimΛ = n and ω|Λ = 0. The Lagrangian Grassmannian L(V, ω)
is the space of all Lagrangian subspaces of (V 2n, ω).
The Lagrangian Grassmannian can be identified with the quotient space U(n)/O(n) by

the following procedure. Fix a compatible complex structure J on V (such a structure exists
because there exists a complex structure on (R2n, ωst) and there is a symplectic isomorphism
of vector spaces (V 2n, ω) ∼= (R2n,Ω0)), and let g be the induced positive definite symmetric
form

g(u, v) =
1

2
(ω(u, Jv) + ω(v, Ju)).
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A Hermitian form on V is specified by the equation

⟨v, w⟩ = g(v, w) + iω(v, w).

The Gram-Schmidt processes tells us that any n-dimensional subspace Λ of V 2n can be given
an orthonormal basis e1, . . . , en with respect to g. In this framework, Λ is Lagrangian if and
only if ω(ei, ej) = 0 for all i, j ∈ {1, . . . , n}, i.e. e1, . . . , en is a unitary orthonormal basis
for V . Two bases specify the same subspace if and only if they can be transformed into one
another by an element of the orthogonal group O(n). This gives the desired identification
between L(V, ω) and U(n)/O(n).

There is a special cycle Σ in the L(R2n, ωst), defined by

Σ = {Λ ∈ L(R2n, ωst) | Λ ∩ Rn ̸= 0} ⊆ L(R2n, ωst) (14)

which will be useful when defining the Maslov index.

5.4.2. Construction of the Maslov index. Suppose u : R × [0, 1] → M2n is a Whitney strip.
The bundle u∗(TM) is a bundle of symplectic vector spaces over R× [0, 1] with subbundles

(u|R×{0})
∗(TL0) and (u|R×{1})

∗(TL1)

of Lagrangian subspaces over R × {0} and R × {1} respectively. Consider the symplectic
vector space Vt = u∗(TM)(t,0) with Lagrangian subspace Λt0 = (u|R×{0})

∗(TL0)(t,0). Parallel
transport identifies u∗(TM)(t,1) with u

∗(TM)(t,0) and the Lagrangian (u|R×{1})
∗(TL1)(t,1) is

transported to a Lagrangian Λt inside Vt. Then we can identify (Vt, ω) with (R2n, ωst)
such that the Lagrangian Λt0 maps to the Lagrangian Rn ⊆ R2n consisting of the first n
coordinates. The image of Λt under this identification is an element of R2n, which can be
thought of as an element At ∈ U(n)/O(n). The intersection number of {At}t∈R ⊆ U(n)/O(n)
with the cycle Σ from (14) is the Maslov index of u, denoted µ(u).
A priori the Maslov index might depend on the choice of parallel transport used to trivialize

the symplectic vector bundle u∗(TM). It can be shown that there is no such dependence,
compare [10, p. 137].

Example 5.4. In the two pictures in Figure 2, the ambient manifold is C, and there are
two curves L0, L1 contained in the plane, intersecting at two points x and y. As L0 and L1

are one-dimensional, they are Lagrangian. The cycle Σ consists of all Lagrangians which
have a nontrivial intersection with the real axis. In our case, this is just the real axis, so
Σ = {R}. The element Λt/Λ

0
t in U(n)/O(n) is equal to R only when the tangent spaces

to the Lagrangians are parallel. Thus, the Maslov index is the number of parallel pairs of
tangent subspaces, as we do parallel transport over all t ∈ R. In the left figure this means
that µ = 1 and in the right it means that µ = 2.

The juxtaposition of Whitney disks behaves well with respect to the Maslov index. Com-
pare [10, Proposition 7.5.3].

Proposition 5.5. Homotopic Whitney disks have the same Maslov index. Moreover, if
ϕ ∈ W (x,y) and ψ ∈ W (y, z), then

µ(ϕ ∗ ψ) = µ(ϕ) + µ(ψ).
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Figure 2. In the two pictures, there are two Lagrangians L0 and L1 in C
intersecting at two points x and y. The blue tangent lines are where the
element Λt/Λ

0
t intersects the cycle Σ.

5.5. Pseudo-holomorphic strips. Recall that upward gradient flowlines of the action func-
tional can be formulated as pseudo-holomorphic strips.

Definition 5.6. Let {Js}s∈[0,1] be a one-parameter family of ω-tame almost-complex struc-
tures on (M2n, ω). A {Js}-pseudo-holomorphic strip u : R× [0, 1] →M2n is a Whitney strip
(see Section 5.3) such that

∂u

∂t
+ Js

∂u

∂s
= 0;

i.e. at each (t, s) ∈ R× [0, 1],
∂u

∂t
+ Jsu(t,s)

∂u

∂s
= 0,

where Jsp : TpM → TpM is the endomorphism determined by {Js}. For fixed ϕ ∈ W (x,y),
let M{Js}(ϕ) denote the set of pseudo-holomorphic representatives of ϕ.

Since for any τ ∈ R, the map R × [0, 1] → R × [0, 1] given by (t, s) 7→ (t + τ, s) is
holomorphic, it follows that if u : R × [0, 1] → M is pseudo-holomorphic, so is the map
(t, s) 7→ u(t+ τ, s). The following is an analogue of Theorem 3.2 in Morse theory. Compare
[10, Theorem 7.6.2]

Theorem 5.7. Let (M2n, ω) be a symplectic manifold, equipped with Lagrangians L0 and
L1. If {Js} is a suitably generic one-parameter family of ω-tame almost complex structures,

then for any non-constant homotopy class ϕ ∈ W (x,y) with µ(ϕ) ≤ 2, the space M̂{Js}(ϕ)
is a smooth manifold with dimension given by

dimM̂{Js}(ϕ) = µ(ϕ)− 1.

In particular, if ϕ is a non-constant homotopy class with µ(ϕ) ≤ 0, then M̂{Js}(ϕ) is empty.

Further, if ϕ is the homotopy class represented by a constant Whitney disk, then M̂{Js}(ϕ)
is a single point, i.e. the constant flowline.

5.6. Definition of the Lagrangian Floer complex. From now on, we assume that our
manifold M is compact. Define CF(L0, L1) to be the F-vector space generated by L0 ∩ L1

with endomorphism ∂ given by

∂x =
∑

y∈L0∩L1

∑
{ϕ∈W (x,y)|µ(ϕ)=1}

#M̂(ϕ) · y. (15)
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This turns out to be a correct definition only when (M,ω) is an exact symplectic manifold
with exact and L0 and L1 are exact Lagrangians. Just like Morse–Smale case, we have
arrived at the definition, but there are a number of components to resolve:

(1) The definition of ∂x given in (15) is a finite sum. The moduli spaces M̂(ϕ) for
µ(ϕ) = 1 are zero dimensional by Theorem 5.7. So, to make sense of the sum (15),

we would like the union of M̂(ϕ) over all ϕ ∈ W (x,y) to be compact. This turns
out not to be true in general, but is true if M is exact and L0 and L1 are exact. The
correction will involve an enlargement of the ring. This is outlined in Section 5.7

(2) The endomorphism ∂ satisfies ∂2 = 0, making CF(L0, L1) into a chain complex with

differential ∂. In this case, we will see that we are analyzing moduli spaces M̂(ϕ)
with µ(ϕ) = 2, and the boundary of this moduli space will be the terms in the sum
∂2x. This is outlined in Section 5.8.

(3) In the moduli spaces M̂(ϕ), there is an implicit dependence on {Js}. It would be

better to write the moduli spaces as M̂{Js}(ϕ). That said, the Lagrangian Floer
complex CF(L0, L1) is independent of the choice of almost complex structures. The
proof of this is outlined in Section 5.9.

5.7. Compactness.

5.7.1. Energy functional. Let (M2n, ω) be a symplectic manifold with a pair of compact
Lagrangian submanifolds L0 and L1. The energy of a pseudo-holomorphic strip u representing
a homotopy class ϕ ∈ W (x,y) is defined to be

E(u) =

∫
R×[0,1]

1

2

(∣∣∣∣∂u∂t
∣∣∣∣2 + ∣∣∣∣∂u∂s

∣∣∣∣2
)
dt ds =

∫
R×[0,1]

1

2

(
gs

(
∂u

∂t
,
∂u

∂t

)
+ gs

(
∂u

∂s
,
∂u

∂s

))
dt ds,

where gs denotes the metric on TM associated to ω and the ω-tame (but not necessarily
compatible) almost-complex structure Js, compare equation (9).

Since L0 and L1 are Lagrangian submanifolds, the symplectic form ω provides a cohomol-
ogy class in H2(M,L0 ∪ L1;R). Thus ω can be evaluated on a Whitney disk from x to y,
and this value will depend only on the homotopy class of the Whitney disk. Compare [10,
Lemma 7.7.3]

Lemma 5.8. If u : D → M2n is a {Js}-holomorphic disk with respect to a 1-parameter
family of almost complex structures {Js}s∈[0,1] which are ω-tame, then

E(u) =

∫
D
u∗(ω),

where ω is thought of as a relative cohomology class in H2(M,L0 ∪ L1;R).

Proof. By definition

2E(u) =

∫
R×[0,1]

(∣∣∣∣∂u∂s
∣∣∣∣2 + ∣∣∣∣∂u∂t

∣∣∣∣2
)
dt ds,

and by the relation g(u, u) = ω(u, Ju), we have that

2E(u) =

∫
R×[0,1]

(
ω

(
∂u

∂s
, Js

∂u

∂s

)
+ ω

(
∂u

∂t
, Js

∂u

∂t

))
dt ds.
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Since u is a {Js}-holomorphic strip and Js ◦ Js = − id, we have the equation Js ∂u
∂t

= ∂u
∂s
. So

2E(u) =

∫
R×[0,1]

(
−ω

(
∂u

∂s
,
∂u

∂t

)
+ ω

(
∂u

∂t
,
∂u

∂s

))
dt ds = 2

∫
R×[0,1]

u∗(ω) = 2

∫
D
u∗(ω)

with the conformal identification R× [0, 1] ∼= D \ {±i} □

5.7.2. Gromov compactness. A broken holomorphic strip from x to y is a sequence x0, . . . ,xn+1

of intersection points between L0 and L1 such that x0 = x and xn+1 = y, and a sequence
u0, . . . , un of non-constant {Js}-holomorphic strips, modulo translation. A broken holomor-
phic strip represents a fixed homotopy class ϕ ∈ W (x,y) if ϕ = [u0] ∗ · · · ∗ [un]
The following comactness result is due to Gromov [6], and in its simplest form is stated

as follows. Compare [10, Theorem 7.7.5].

Theorem 5.9 (Gromov compactness). Assume that π2(M,Li) = 0 for i = 0, 1, π2(M) = 0,
and L0 and L1 are compact Lagrangian submanifolds. Further assume that M is compact.
Let x and y be two intersection points of L0 and L1. Then any sequence of {Js}-pseudo-
holomorphic strips from x to y with a fixed energy bound has a C∞,loc convergent subsequence
to a broken holomorphic strip from x to y.

5.7.3. Exact symplectic manifolds. Let (M2n, dα) be an exact symplectic manifold. Recall
that a Lagrangian submanifold L in M is called exact if there exists f : L → R such that
α|L = df . Also recall the action functional A on the space of paths V from L0 to L1. For a
path γ : [0, 1] →M in V ,

A(γ) = f0(γ(0))− f1(γ(1)) +

∫
[0,1]

γ∗(α).

For a constant path x, the action functional is given by

A(x) = f0(x)− f1(x).

Thus for a pseudo-holomorphic u in W (x,y), the energy of u is given by

E(u) =

∫
D
u∗(ω) = A(x)−A(y) = f0(x)− f1(x)− f0(y) + f1(y), (16)

where we used Lemma 5.8 followed by Lemma 5.1 in the left-most two equalities. Consider
the union ⋃

{ϕ∈W (x,y)|µ(ϕ)=1}

M̂(ϕ).

It is a zero-dimensional manifold by Theorem 5.7. Thus, equation (16) tells us that there
is an energy bound on the pseudo-holomorphic strips in the above union, so by Gromov
compactness Theorem 5.9, the above union is finite. This implies that ∂ in equation (15) is
a finite sum.

However, in general, we cannot ensure that
∑

#M̂(ϕ) is finite, even in the case when M
is compact. We introduce the Novikov ring to alleviate this issue.
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5.7.4. The Novikov ring. The Novikov ring NZ/2Z over Z/2Z is defined as the collection of
formal sums

xA =
∑
a∈A

xat
a,

where A is a discrete set, xa ∈ Z/2Z, and t is a formal variable. We can define ring
multiplication to be xA · xB = xA+B, where A + B is the Minkowski sum A + B = {a + b |
a ∈ A, b ∈ B}.

Definition 5.10. For a compact manifold M , define the Lagrangian Floer complex for a
compact manifold CF(L0, L1;NZ/2Z) be the module over the Novikov ring NZ/2Z generated
by the intersection points of L0 and L1 (of which there are finitely many). For a homotopy
class ϕ, let a(ϕ) be the integral of ω on any representative of ϕ. Define the endomorphism

∂x =
∑

y∈L0∩L1

∑
{ϕ∈W (x,y)|µ(ϕ)=1}

#M̂(ϕ)ta(ϕ) · y. (17)

For a fixed real number a, the set ⋃
{ϕ∈W (x,y)|µ(ϕ)=1,a(ϕ)=a}

M̂(ϕ)

is a compact one-dimensional manifold by Theorem 5.7 and Theorem 5.9.
If M is compact, first note that H2(M) and H1(L0 ∪ L1) are finitely generated, which by

the following part of the exact sequence of the pair (M,L0 ∪ L1)

H2(M) H2(M,L0 ∪ L1) H1(L0 ∪ L1)

implies that H2(M,L0 ∪ L1) is finitely generated. Since a(ϕ) can be thought of as the
evaluation of [ω] ∈ H2(M,L0 ∪ L1;R) on the relative homology class in H2(M,L0 ∪ L1)
associated to ϕ, there are finitely many values of a(ϕ) in the sum in (17). Thus, ∂x is a finite
sum.

5.8. Gluing. This section is dedicated to outlining the idea behind the proof that ∂2 = 0.
We are working under the assumptions that π2(M) = 0, π2(M,Li) = 0 for i = 0, 1, and M
is compact.

Theorem 5.11. For generic choices of {Js}, and for each ϕ ∈ W (x,y) with µ(ϕ) = 2,
the moduli space M{Js}(ϕ) has a compactification to a one-manifold with boundary, and the
boundary is identified with ⋃

{
ϕ1,ϕ2

∣∣ ϕ1∗ϕ2=ϕ
µ(ϕ1)=µ(ϕ2)=1

}M̂{Js}(ϕ1)× M̂{Js}(ϕ2). (18)

Omit the {Js} from the subscript in the moduli space. We have that

∂2x =
∑

z∈L0∩L1

∑
{ϕ1∈W (x,y),ϕ2∈W (y,z)|µ(ϕ1)=µ(ϕ2)=1}

#M̂(ϕ1)#M̂(ϕ2)t
a(ϕ1)ta(ϕ2) · z.
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Fix z in the above sum, and group the inner summand by the value of a(ϕ1) + a(ϕ2) and
then ϕ = ϕ1 ∗ ϕ2. Since a(ϕ) = a(ϕ1) + a(ϕ2) by Proposition 5.5, the coefficient of z is

∑
ϕ∈W (x,z)

 ∑
{
ϕ1,ϕ2

∣∣ ϕ1∗ϕ2=ϕ
µ(ϕ1)=µ(ϕ2)=1

}#M̂(ϕ1)#M̂(ϕ2)

 ta(ϕ).

Since M̂(ϕ) is a one-dimensional manifold by Theorem 5.7 and the points of the boundary
of its compactification are given by Theorem 5.11, the term in the inner parenthesis is zero
modulo two. The above sum is also finite because there are finitely many a(ϕ). Thus, ∂2 = 0,
implying that (CF(L0, L1;NZ/2Z, ∂) is a chain complex.

The homology of this complex is Lagrangian Floer homology HF (L0, L1;NZ/2Z).

5.9. Independence and invariance. In this section, we go over the main ideas behind
showing that the Lagrangian Floer complex is independent of the choice of almost-complex
structures appearing in the differential, and also independent under Hamiltonian isotopies,
compare property (3) in Section 5.1.

5.9.1. Almost-complex structure invariance. Suppose {Js0} and {Js1} are two one-parameter
families of almost-complex structures that are suitably generic for the complexes

CF{Js0}(L0, L1;NZ/2Z) and CF{Js1}(L0, L1;NZ/2Z)

to be defined. Connect {Js0} and {Js1} by a one-parameter family of paths of almost complex
structures {Jst }.
Given x,y ∈ L0∩L1 and ϕ ∈ W (x,y), there is a parametrized moduli spaceM{Jst }s,t∈[0,1]

(ϕ)
of Whitney strips u representing ϕ such that

∂u

∂t
+ Jsψ(t)

∂u

∂s
= 0,

where ψ : R → [0, 1] is given as before in Section 3.6, a smooth monotone function such that
ψ(t) = 0 for t ≤ 0 and ψ(t) = 1 for t ≥ 1. Note that the almost-complex structure Jsψ(t)
is evaluated at u(t, s), and these moduli spaces no longer have an R-action, just like in the
Morse–Smale case.

Theorem 3.11 has the following analogue. Compare [10, Theorem 7.9.1].

Theorem 5.12. Let (M2n, ω) be a closed symplectic manifold with two compact Lagrangians
L0 and L1, and fix two paths of ω-tame almost-complex structures {Js0}s∈[0,1] and {Js1}s∈[0,1].
Then for any sufficiently generic two-parameter family of ω-tame almost-complex structures
{Jst }s,t∈[0,1]2 connecting {Js0}s∈[0,1] and {Js1}s∈[0,1], and for all homotopy classes ϕ ∈ W (x,y)
with µ(ϕ) ≤ 1, the space M{Jst }s,t∈[0,1]

(ϕ) is a smooth manifold of dimension

dimM{Jst }s,t∈[0,1]
(ϕ) = µ(ϕ).

In particular, if ϕ is a nonconstant homotopy class with µ(ϕ) < 0, then M{Jst }s,t∈[0,1]
(ϕ) is

empty.

Define the continuation map

Φ = Φ{Jst }s,t∈[0,1]
: CF{Js0}(L0, L1;NZ/2Z) → CF{Js1}(L0, L1;NZ/2Z)
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by the formula

Φ(x) =
∑

y∈L0∩L1

∑
{ϕ∈W (x,y)|µ(ϕ)=0}

#M{Jst }s,t∈[0,1]
(ϕ)ta(ϕ) · y.

First we show that Φ is a chain map. Gromov compactness and gluing can be used to
show the following proposition. Compare [10, Proposition 7.9.1].

Proposition 5.13. If {Jst }s,t∈[0,1] is a generic two-parameter family of ω-tame almost-
complex structures, then for all x,y ∈ L0 ∩ L1 and all homotopy classes of Whitney disks
ϕ ∈ W (x,y) with µ(ϕ) = 0, the moduli space #M{Jst }s,t∈[0,1]

(ϕ) is a compact zero-dimensional

manifold. If µ(ϕ) = 1, the compactification of #M{Jst }s,t∈[0,1]
(ϕ) is a compact one-dimensional

manifold whose boundary is identified with⋃
{
ϕ1∗ϕ2=ϕ

∣∣µ(ϕ1)=1
µ(ϕ2)=0

}M̂{Js0}s∈[0,1]
(ϕ1)×M{Jst }s,t∈[0,1]

(ϕ2)

∪
⋃

{
ϕ1∗ϕ2=ϕ

∣∣µ(ϕ1)=0
µ(ϕ2)=1

}M{Jst }s,t∈[0,1]
(ϕ1)× M̂{Js1}s∈[0,1]

(ϕ2).

The y component of
(∂ ◦ Φ + Φ ◦ ∂)(x)

counts the points in the boundary given in Proposition 5.13. Since this boundary has an
even number of points, we have that (∂ ◦ Φ + Φ ◦ ∂)(x) = 0, so Φ is a chain map.
Now we show that Φ = Φ{Jst }s,t∈[0,1]

induces an isomorphism on homology. To do so, we
show that Φ{Js1−t}s,t∈[0,1]

is the homotopy inverse of Φ by constructing a homotopy operator

H : CF{Js0}s∈[0,1]
(L0, L1) → CF{Js0}s∈[0,1]

(L0, L1)

such that
∂ ◦H +H ◦ ∂ = id+Φ{Js1−t}s,t∈[0,1]

◦ Φ{Jst }s,t∈[0,1]
(19)

The homotopy operator H is defined by counting holomorphic disks using a three-parameter
family of almost-complex structures {Jsr,t}.
Start with {Jst } and choose {Jsr,t}{s∈[0,1],r∈[0,∞),t∈R} such that

• Jsr,t = Jst if r = 0,
• for t > 1, Jsr,t = Jsψ(r+t),
• for t < −1, Jsr,t = Jsψ(1−r−t).

Given ϕ ∈ W (x,y), consider the moduli space MH(ϕ) of pairs (r, u), where r ∈ (0,∞)
and u is a Whitney strip representing ϕ such that

∂u

∂t
+ Jsr,t

∂u

∂s
= 0.

An analogue of Theorem 5.13 is that MH is a smooth manifold of dimension µ(ϕ)−1. When
the dimension of MH is one, a suitable compactification can have three types of boundary,
depending on the convergence of r:

(1) r → ρ for some real number ρ ∈ (0,∞). In this case, the boundary point is a
{Jsr,t}-holomorphic disk which breaks off.

(2) r → 0. In this case, the boundary point is a constant flowline for {Js0}s∈[0,1].
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(3) r → ∞. In this case, the boundary point consists of a {Jst }s,t∈[0,1]-holomorphic disk
juxtaposed with a {Js1−t}s,t∈[0,1]-holomorphic disk.

Counting boundary points gives us the equation (19). A simple adaptation of the above
construction also shows that Φ{Jst }s,t∈[0,1]

◦ Φ{Js1−t}s,t∈[0,1]
is homotopic to the identity map.

Thus, Φ{Jst }s,t∈[0,1]
induces on homology, so there is no dependence on the path of almost-

complex structures.

5.9.2. Hamiltonian isotopy invariance. Suppose that H : M × [0, 1] → R is a bounded
Hamiltonian function and {Ψt}t∈[0,1] : M → M is a corresponding family of Hamiltonian
diffeomorphisms with Ψ0(x) = x, i.e. for any vector field Y and x ∈M ,

ω

(
dΨt

dt
(x), Y

)
= YxHt.

We wish to construct continuation maps

Φ{Ψt}t∈[0,1]
: CF{Js}s∈[0,1]

(L0, L1) → CF{Js}s∈[0,1]
(L0,Ψ1(L1)),

which are isomorphisms on homology, as this will imply the Hamiltonian isotopy invariance
given in (3) in Section 5.1.

Consider pseudo-holomorphic strips u : R× [0, 1] →M2n with the following property with
the following moving boundary conditions: u(t, 0) ∈ L0, u(t, 1) ∈ Φt(L1) for all t ∈ R, and
limt→−∞ u(t, s) = x and limt→+∞ u(t, s) = y, and the usual Cauchy–Riemann equations

∂u

∂t
+ Js

∂u

∂s
= 0.

Such maps u can be assempled into homotopy classes W ′(x,y). The space of pseudo-
holomorphic representatives for a given homotopy class ϕ ∈ W ′(x,y) is denotedM{Ψt}t∈[0,1]

(ϕ).

There is an appropriate analogue of Theorem 5.13 is that the moduli spaces M{Ψt}t∈[0,1]
(ϕ)

with µ(ϕ) ≤ 1 are smooth manifolds of dimension µ(ϕ).
For x ∈ L0 ∩ L1, define the continuation maps

Φ{Ψt}t∈[0,1]
(x) =

∑
y∈L0∩Ψ1(L1)

#M{Ψt}t∈[0,1]
(ϕ)ta(ϕ) · y.

To show that Φ{Ψt}t∈[0,1]
is a chain map, the following variant of Gromov compactness

adapted to W ′(x,y) is used. Compare [10, Lemma 7.9.3].

Lemma 5.14. For each ϕ ∈ W ′(x,y), there exists a constant C(ϕ) such that for all pseudo-
holomorphic representatives u of ϕ,

E(u) ≤ C(ϕ).

Further constructions go into showing that Φ{Ψt}t∈[0,1]
is a chain map and proving that

Φ{Ψt}t∈[0,1]
induces an isomorphism on homology.
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[3] Raoul Bott. The stable homotopy of the classical groups. Ann. of Math. (2), 70:313–337, 1959.



ON MORSE–SMALE AND LAGRANGIAN FLOER HOMOLOGY 27

[4] Andreas Floer. Morse theory for Lagrangian intersections. J. Differential Geom., 28(3):513–547, 1988.
[5] Andreas Floer. Symplectic fixed points and holomorphic spheres. Comm. Math. Phys., 120(4):575–611,

1989.
[6] M. Gromov. Pseudo holomorphic curves in symplectic manifolds. Invent. Math., 82(2):307–347, 1985.
[7] Dusa McDuff and Dietmar Salamon. Introduction to symplectic topology. Oxford Graduate Texts in

Mathematics. Oxford University Press, Oxford, third edition, 2017.
[8] J. Milnor. Morse theory. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton,

N.J., 1963. Based on lecture notes by M. Spivak and R. Wells.
[9] John Milnor. Lectures on the h-cobordism theorem. Princeton University Press, Princeton, N.J., 1965.

Notes by L. Siebenmann and J. Sondow.
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